

Обработка данных ОГТ в программе RadExPro Plus – практическое руководство

(Редакция 05.10.2009 г.)

ООО «Деко-геофизика» Научный парк МГУ, Ленинские горы 1-77, 119992 Москва, Россия Тел./Факс: (+7 495) 930 94 14 E-mail: <u>support@radexpro.ru</u>

интернет: <u>www.radexpro.ru</u>

Содержание

Введение	
Ввод данных, присвоение геометрии, бинирование	
Создание проекта в RadExPro Plus	3
Загрузка исходных данных в проект	5
Присвоение геометрии и бинирование	
Сортировка данных по ОГТ и контроль присвоения геометрии	
Анализ данных и потрассная обработка	24
Сортировка трасс по ОГТ и анализ волновой картины	24
Компенсация затухания амплитуд	
Расширение спектра	
Полосовая фильтрация	
Балансировка амплитуд трасс	
Задание параметров мьютинга	
Верхний мьютинг	
Выполнение потока предобработки	
Анализ скоростей суммирования и получение суммарных разрезов	40
Подготовка данных к анализу скоростей, формирование суперсейсмограмм	
Анализ скоростей суммирования	
Получение суммарного разреза	
Визуализация суммарного разреза	

Введение

Данное руководство предназначено для пользователей, начинающих обрабатывать сейсмические данные МОВ ОГТ в программе RadExPro Plus. Рассматриваются все стандартные этапы базовой обработки ОГТ от ввода геометрии до построения временного суммарного разреза – так называемый минимальный граф обработки. При этом, предполагается, что пользователь уже знаком с теорией метода ОГТ и принципиальной технологией обработки таких данных. Информацию о теоретических основах метода ОГТ и и используемых процедурах обработки можно почерпнуть, например, из следующей литературы:

Гурвич И.И., Боганик Г.Н. Сейсмическая разведка. М., Недра, 1980. Шерифф Р., Гелдарт Л. Сейсморазведка. В двух томах. М., Мир, 1987. Хаттон Л., Уэрдингтон М., Мейкин Дж. Обработка сейсмических данных. Теория и практика. М., Мир, 1989.

Вся обработка проводится на примере реальных данных, которые можно загрузить с нашего сайта: <u>http://radexpro.ru/upload/File/tutors/cmp/inpdata.zip</u>

В архиве содержатся исходные данные для работы: фрагмент наземного сейсмического профиля, записанный в формате SEG-Y (файл *line_l.sgy*), содержащий в заголовках трасс номера пунктов приема и возбуждения, и два текстовых файла, *rec_geom.txt* и *sou_geom.txt*, содержащие координаты приемников и источников, соответственно.

Кроме того, вы можете загрузить готовый проект, получающийся в результате выполнения всех шагов, описанных в руководстве: <u>http://radexpro.ru/upload/File/tutors/cmp/MyProject.zip</u>

Следует отметить, что возможности программы, конечно, не ограничиваются описанным здесь минимальным графом. Мы сознательно не стали рассматривать здесь такие более сложные темы, как, например, горизонтальный скоростной анализ, миграция, расчет и анализ сейсмических атрибутов и др. Вы можете найти информацию об этих, и других, процедурах обработки и анализа данных в «Руководстве пользователя» к программе.

Ввод данных, присвоение геометрии, бинирование

Создание проекта в RadExPro Plus

Вся обработка данных метода ОГТ в программе RadExPro Plus производится в рамках проектов. Проект – это совокупность исходных данных, промежуточных и окончательных результатов обработки, потоков обработки, организованных в единую базу данных, используемую пакетом обработки сейсмических данных RadExPro Plus. Проекты хранятся в отельных папках на диске, папка для проекта создается автоматически при создании проекта. Проект можно переносить с компьютера на компьютер простым копированием папки (при условии, что все используемые данных хранятся внутри этой папки).

Создадим новый проект обработки. Запустите менеджер проектов. Для этого выберите в меню Windows Пуск пункт RadExPro Plus Total 3.95.

~ j j	
🖬 DECO Geophysical 🔹 🕨	Documentation
💼 EasyRecovery Professional 🔹 🕨	R TapeLoader
💼 Exact Audio Copy 🔹 🕨	🥻 RadExPro Plus Advanced 3.95 😽

При запуске менеджера проектов открывается диалоговое окно, содержащее список зарегистрированных проектов.

🖀 RadExPro Project Manager		×
Registered projects		
Line_22_lam hhh WS test	^	New project
DEMO_QC_nomarine shallow_NSP ws_2005_EAST		Select project
BlackSea_vels BlackSea		Remove from list
Seismic_tasks	~	
Project directory:		
OK Cancel		

Нажмите на кнопку New Project и выберите родительский каталог на диске, в котором будет создан подкаталог с проектом. После этого, в появившемся окне, введите имя проекта.

New database			
Title My Project			
Create subfolder			
OK Cancel			

Убедитесь в том, что опция Create subfolder выбрана и нажмите Ok. В выбранном каталоге появится подкаталог с именем проекта. Также проект появится в списке доступных (зарегистрированных) проектов.

🖀 RadExPro Project Manager		
Registered projects		
WS_2005_EAST BlackSea_vels BlackSea seismic_tasks DEM0_QC_nomarine LandDemo BUST_2007_calibr Practicum My Project	 • • 	New project Select project Remove from list
Project directory: F:\Practicum\My Project\ OKCancel		

Выберете его и нажмите Ok.

Появится главное окно программы RadExPro, содержащее дерево проекта. Пока это дерево пусто.

Загрузка исходных данных в проект

Используя проводник Windows, перейдите в папку проекта:

Создайте в ней подкаталог Data и скопируйте в него исходные данные.

Хранение данных внутри каталога проекта позволяет пакету использовать относительные пути до файлов с данными вместо абсолютных, что облегчает перенос проектов с компьютера на компьютер.

Вернитесь к главному окну программы RadExPro. База данных RadExPro имеет 3 структурных уровня. Верхний уровень отвечает площади, на которой проводились работы, средний – профилю, нижний – потоку обработки. Кликните правой кнопкой мыши на желтом кружке, выберите опцию Ceate new area и введите название площади на которой проводились работы.

На следующем рисунке рисунке показано окно, в котором необходимо ввести название площади:

Аналогично, кликнув правой кнопкой мыши на желтом прямоугольнике с названием площади, выберите пункт Create line и создайте новый профиль.

	Juic	IIII III III	озданте повын профиль.
т	🖉 Ra	adExPro	+ 3.7 >>> My Project
_	Help	Options	Database Tools Exit
	O	— <mark>My A</mark>	View map Create line Rename Delete

Имя профиля задается вводится аналогично.

New line r	name		×
Line 1			
	OK	Canad	
		Lancei	

База данных позволяет в рамках одного проекта хранить несколько площадей, в каждой из площадей – несколько профилей, каждый профиль обрабатывается в нескольких потоках. По аналогии с созданием площади и профиля, создадим поток обработки *010 – data load*. В начале названия каждого потока рекомендуется использовать его номер. Процесс обработки сейсмических данных происходит в несколько этапов, выполняемых последовательно. В силу того что программа RadExPro Plus располагает названия структурных элементов базы данных в алфавитном порядке, разумно нумеровать потоки, чтобы они отображались в верной логической последовательности.

Перейдите в режим редактирования потоков, дважды кликнув левой кнопкой мыши по названию потока. Откроется окно редактора потока. В левой части окна располагается сам поток (пока он пуст), справа – библиотека доступных процедур (модулей), разделенная на смысловые группы.

My Project/My Area/Line 1/010 data l	oad	
Help Options Database Tools Run Flow	mode E <u>x</u> it	
		Data I/O 🔺
	Trace Input	Data Input
	Trace Output	Data Output
	SEG-D Input	Super Gather
	Lamb: Solid Layer - Solid modeling	SCS-3 Input
	SEG-B Input	SEG-Y Input
	SEG-Y Output	Text Output
		Signal Processing
	Amplitude Correction	Bandpass Filtering
	DC Removal	Hilbert Transform
	Resample	Trace Math Transforms
	Trace Math Transforms (1)	Wave field subtraction
		Stacking/Ensembles
	Ensemble Stack	Asymptotic CCP Binning
		Deconvolution
	Deconvolution	Predictive Deconvolution
	Surface-Consistent Deconvolution	Custom Impulse Trace Transforms
	Nonstationary predictive deconvolution	m
		Trace Editing
	Trace Math	X Interpolation
	Trace Length	Trace Editing
		Data Enhancement
	2D Spatial Filtering	F-K Filtering
	Radon Transforms	Radial Trace Transform
	2D Spatial Filtering (1)	
		Migration
	T-K Migration	STOLT3D
	Stolt F-K Migration	
		Interactive Tools
	Screen Display	Velocity Editor
	QC Analysis	Interactive Velocity Analysis
	3D Gazer	Stream Plotting
	Radar Screen	
		Connetry/Henders
[MB1 - Drag module; Ctrl+MB1 - Copy module; MB	 DDICIICK - Module Parameters; MB2 - Toggle modu 	Jie; Ctri+MB2 DDiClick - Delete // ▼

Мы создадим поток, состоящий из модулей SEG-Y Input и Trace Output (оба модуля располагаются в группе Data I/O – ввод-вывод данных). Этот поток будет читать данные из SEG-Y-файла на диске и записывать их в базу данных проекта в виде объекта базы – «набора данных».

Модули добавляются в поток по-одному. Для того, чтобы добавить модуль в поток просто перетащите его из библиотеки справа в область потока слева. При этом откроется диалог настройки параметров модуля. (В дальнейшем, тот же диалог параметров модуля в потоке можно вызвать двойным щелчком мыши на имени модуля). Модули, ужу находящиеся в потоке, можно перемещать вверх-вниз относительно друг друга, перетаскивая их мышью.

В группе Data I/O найдем модуль SEG-Y Input и добавим его в поток. При добавлении модуля в открывшемся диалоговом окне зададим параметры чтения данных. Для этого, выберем файл с данными line_1.sgy. В учебных целях, номера ПВ и ПП в этом файле записаны не в стандартные поля заголовков трасс SEG-Y, а в резервное пространство блока заголовка трассы. Для того, чтобы прочитать поля заголовков трасс, которые записаны в нестандартные поля введем переопределение полей заголовков (remap). Для этого включим опцию Remap header value и введем текст *RECNO,4I,,181/SOURCE,4I,,185/*.

SEG-Y Input	
File(s)	Sample format Sample interval 4 II ∩ I2 ∩ I4 • R4 Number of traces 23954 IBM Floating Point Trace length 750 Ise trace weighting factor Trace length 750 Ise trace weighting factor SEGY Normal byte order (MSB First) 750 SEGY Reverse byte order (LSB First) Sorted by FFID:0FFSET Image: Get all C Selection *:* Image: Get all C Selection *:* Image: Reverse header value Remap header value RECN0,41,,181/ SOURCE,41,,185/ 0
Add Delete Load list Save list OK	Cancel

Переопределение заголовков. Некоторые форматы хранения сейсмических данных позволяют переопределять заголовки трасс, то есть хранить в блоке заголовка трасс значения, не предусмотренные стандартом или записанные в другом формате представления числа и в другой части заголовка. Как правило, современные пакеты дают возможность явным образом указывать начиная с какого байта от начала заголовка и в каком формате читать так сохраненные значения. В файле с учебным профилем line_1.sgy так сохранены поля заголовков, содержащие номер (пикет) источника и приемника, записанные как целые четырёхбайтные числа в байтах 181-184 и 185-188. Описанное выше правило переопределения полей заголовков позволит их оттуда прочитать и сохранить в поля заголовков RECNO и SOURCE во внутреннем формате RadExPro Plus.

Поля заголовков RadExPro. Программа RadExPro использует для хранения вспомогательной информации о сейсмических трассах собственный набор полей заголовков. Значения полей заголовков привязаны к трассе и могут восприниматься как связанный с ней набор именованных переменных.

При создании нового проекта, набор полей заголовков в проекте сходен с заголовками трассы в формате SEG-Y. (Соответствие заголовков RadExPro и SEGY см. в описании модуля SEG-Y Output в «Руководстве пользователя»). Однако далее поля заголовков можно редактировать – добавлять новые поля, удалять или переименовывать существующие.

Часть полей заголовков являются стандартными и их смысл менять категорически не рекомендуется (например поле DT всегда должно хранить значение интервала дискретизации). Другие поля можно использовать по своему усмотрению. В новые (или существующие, но не используемые) поля заголовков можно записывать различную информацию, например время прихода волны, пропикированное на трассе. Над значениями

полей заголовков можно выполнять математические операции, преобразовывать их в пикировки, отражать изменения значений заголовка в различных наборах данных и т.д.

После модуля SEG-Y Input в поток добавим модуль Trace Output, который должен сохранить прочитанные данные в базу данных. Объект, который будет содержать эти данные назовите line 1 – raw и разместите его на втором уровне базы данных в профиль Line 1 (как показано на следующем рисунке).

Select dataset	X
Object name line 1 - raw	
<u>O</u> bjects	Location
	⊡ • My Area ⊡ • Line 1 010 - data load
Rename Delete	Ok Cancel

Также, для контроля, после модуля Trace Output добавьте в поток модуль Screen Display. Полученный поток должен выглядеть следующим образом:

🖄 My Project/My Area/Line 1/010 - data load 📃 🗖 🔀				
Help Options Database Tools Run Flow mode Exit				
SEG-Y Input <- line 1.sgy		Data I/O 🧖		
Trace Output -> line 1 - raw	Trace Input	Data Input 📃		
Screen Display	Trace Output	Data Output		
	VSP Data Modeling	3D Data Input		
	3D Data Output	SEG-D Input		
	2D Finite Difference Modeling	Super Gather		
	GSSI	RAMAC/GPR		
	ЛОГИС	Lamb: Solid Layer - Solid modeling		
	SCS-3 Input	SEG-B Input		
	SEG-Y Input	SEG-Y Output		
	Text Output	Analogic Data Input		
		Signal Processing		
	Amplitude Correction	Bandpass Filtering		
	DC Removal	Hilbert Transform		
	Resample	Trace Math Transforms		
	VSP SDC	Trace Math Transforms (1)		
	Wave field subtraction			
		Stacking/Ensembles		
	Ensemble Stack	Asymptotic CCP Binning		
		Deconvolution		
	Deconvolution	Predictive Deconvolution		
	Surface-Consistent Deconvolution	Custom Impulse Trace Transforms		
	Nonstationary predictive deconvoluti	on		
MB1 - Drag module; Ctrl+MB1 - Copy module; MB	1 DblClick - Module Parameters; MB2 - Toggle mo	dule; Ctrl+MB2 DblClick - Delete		

Для выполнения потока выберите команду меню Run. В результате должно открыться окно Screen Display, отображающее вводимые данные, а сами данные будут прочитаны из файла на

диске и записаны в базу данных. Окно Screen Display, которое должно возникнуть на экране приведено ниже.

Важно!: В тех случаях, когда объем считываемых из файла данных велик (сопоставим или превосходит объем оперативной памяти ПК или просто близок или больше 1 Гб), необходимо использовать покадровый режим (Framed mode), который позволяет считывать данные в память не целиком, а кусками. Перейти в этот режим и определить размер порций можно при помощи пункта меню Framed mode..., доступного из редактора потоков.

Замечание о названиях. Название любого объекта базы данных (сейсмического набора данных, потока обработки и т.д.) должно отражать его суть, а не состоять из нескольких букв. Для наборов сейсмических данных название следует формировать из 2-х частей – идентификатора исходных данных и этапа обработки, на котором они находятся. Так, при вводе полевых данных, здесь было выбрано название *line 1 – raw*.

Присвоение геометрии и бинирование

Присвоение геометрии к сейсмическим данным заключается в том, что для каждой трассы определяется ряд значений, которые, затем, сохраняются в указанные поля заголовков набора данных в базе данных проекта. Список необходимых значений и соответствующие им поля заголовков приведены ниже:

- 1. Номер пункта возбуждения (поле заголовка SOURCE)
- 2. Координата пункта возбуждения (SOU_X)
- 3. Номер пункта приема (RECNO)
- 4. Координата пункта приема (REC X)
- 5. Расстояние между источником и приемником (OFFSET) и модуль этой величины (AOFFSET)
- 6. Уникальный номер выстрела FFID

7. Номер канала CHAN

Замечание. Приведенный выше список отвечает одномерной геометрии. Вообще говоря, возможно использовать для описания координат ПВ и ПП поля заголовков SOU_X, SOU_Y и REC_X, REC_Y. Однако, к силу того, что в учебном профиле наблюдения выполнялись вдоль одной линии, здесь предлагается ограничиться только одной координатой X, ось X направлена вдоль профиля.

Если поля заголовков FFID, CHAN, SOURCE и RECNO были заполнены при чтении данных из исходного SEG-Y файла, то координаты ПВ и ПП необходимо импортировать из тестовых файлов, а расстояния между ПВ и ПП – рассчитать.

В практической работе может встречаться абсолютно любое сочетание заполненных заголовков трасс. Например, данные могут быть переданы в обработку вообще с пустыми заголовками. В этом случае их придется формировать с использованием инструментов, предлагаемых пакетом обработки.

Ситуация, в которой в исходных сейсмических данных содержатся номера выстрелов и каналов, а связь между номерами выстрелов и пикетами ПВ, а также между номерами каналов для каждого выстрела и пикетами ПП нужно рассчитать, довольно распространена. Однако, в целях упрощения задания геометрии в учебных целях, в данных сразу содержатся номера пикетов ПВ и ПП и необходимо импортировать только координаты.

Импорт координат пунктов возбуждения и приема из текстового файла

Для манипуляций с полями заголовков сейсмических данных, в том числе, для импорта значений из текстовых таблиц, в пакете RadExPro используется средство Geometry Spreadsheet. Выберите пункт меню Database/Geometry Spreadsheet...____

М	y Projec	t/My Area	/Line	1/010) - da	ıta load
lр	Options	Database	Tools	Run	Flow r	mode Exit
EG rac	-Y Inpu e Outpu	Load Save Add data	a file			7SP SDC Vave field subtraction
	on Drop	Geometry spreadsheet Database visualization		t	Ensemble Stack	
Database manager Dataset history Edit header fields		Deconvolution				
			Vonstationary predictive deconvol			
		Databas	e mana	gemen	t ▶	JSP Display
						3D View Velocity Editor Advanced VSP Dispaly

Затем выберите набор сейсмических данных, геометрию которых нужно редактировать.

Choose dataset	X
Object <u>n</u> ame line 1 - raw	
<u>O</u> bjects	Location
line 1 - raw	⊡ · My Area ⊡ · Line 1 010 - data load
Rename Delete	History Ok Cancel

На следующем рисунке приведен внешний вид окна Geometry Spreadsheet.

Для того чтобы отобразить требуемые поля заголовков (все объявленные в базе данных поля заголовков уже существуют, но не отображаются) воспользуйтесь опцией меню Fields / Add fields... В открывшемся диалоговом окне, удерживая нажатой кнопку Ctrl, выберите следующие поля заголовков: SOURCE, SOU_X, RECNO, REC_X

Add header fields to view				
Name	Tupe	[lesoription		
FICK2	Baal	Hoizon Bek		
FREAMP	Beal	Instant usin constant		
ELINE	I#32	Bezeiver line number		
FEC CBI	Integer	Beceiver's cross line number		
FEC DATUM	Paal	Desum elevation at receiver group		
FEC FLEV	Baal	Beceiver aroun elevation		
FEC H20D	Baal	Water denth at raceiver group		
FEC IN	Integer	Beceiver's inine number		
FEED BASIN	Reals	Treserver's infine namber		
FEC SLOC	Int32	Beceiver station number within receiver line		
FEC STAT	Baal	Be advertation static converting		
EEC CTATI	Dasi0	rieser-ergioup «due concettori		
EEC STAT2	Dool0			
EEC CTATO	Da al0			
	Deal	Upsels time at recover group		
	Dodi Dodi	V receive: group coorde ale		
FEC Y	Deal	X receiver group coordinate		
	Insai Iwaa	n receive group coordinate Disasting a tation Musikas		
C UNE	Int.32	Receiver station intimber		
	Into2	Source line number		
	Into and	Trans assumed works within CDD and within		
CEDING	Integer	Check is the		
SEPINE COLL COL	inte Inte	Stack index		
	Inreger DL	Distance & cross line humber		
SOU DATUM	Real	Datum elevation at source		
	neal Dl	Suirace elevation at source		
SUU_HZUU	Heal	water depth at source		
SOU_INE	Integer	Source's mine humber		
SUU_RESID	Heal8			
SUU_SLUC	Int32	Source station number within source line		
SUU_STA	lisal	Source static correction		
	Real8			
SHILSTA 2	Beal8			
SOU STA-3	Real8			
<u>1500 X</u>	Real	X source coordinate		
500_Y	Heal	Y source coordinate		
SUURCE	Int32	Source station number		
SRF_SLOC	Int32			
STACKONT	Int32	Number of vertically summed traces yielding this trac		
SIAT1	E al	Intervative time shilts		
STAT2	Real	Interactive time shifts		
TFULLS	Beal	End of mute lime		
TLIVE_3	Real	Start of mute time		
TOT_STAT	Real	Total static applied		
TR_FOLD	Integer	Number of horizontally stacked traced yelding this tr		
TRACENO	Integer	Trace sequence number within line		
TRC_TYPE	Integer	Trace identification code		
LPHOLE	Real	Uphole time at source		
XLINE_NO	Integer	CDP Cross Line Number 🔤		
<				
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		Hold Ob to select several fileds		
01	Council			
	Lance	Load template selection Save template selection		

В результате окно редактора заголовков должно выглядеть так:

H	H line 1 - raw - Geometry Spreadsheet					
Eje	lds <u>E</u> dit <u>T</u> ools	E <u>x</u> it				
						~
	TRACENO	SOURCE	SOU_X	RECNO	REC_X	
	99	1	0.00000	98	0.00000	
	100	1	0.00000	99	0.00000	
	101	1	0.00000	100	0.00000	
	102	1	0.00000	101	0.00000	
	103	1	0.00000	102	0.00000	
	104	1	0.00000	103	0.00000	
	105	1	0.00000	104	0.00000	
	106	1	0.00000	105	0.00000	
	107	1	0.00000	106	0.00000	~
					NUM	

Выберите пункт меню Tools/Import. Откроется диалог настройки параметров импорта. В нем будет необходимо открыть файл sou_geom.txt и описать правила заполнения полей заголовков. Для этого нужно добавить в список Matching fields поле SOURCE (нажав на соответствующую кнопку Add и выбрав его из списка), в поле Assign Fields - поле SOU_X. Затем нужно будет указать из каких колонок текстового файла читать указанные поля в текстовых строках под кнопками Set column. (Кстати, если установить курсор в соответствующую колонку и кликнуть на Set column, то номер колонки будет туда занесен автоматически). Наконец, следует указать диапазон строк, из которых программа будет

получать значения в группе параметров Lines: From, To. Пример правильного заполнения приведен на рисунке.

p j		
🔲 Import Headers		
Matching fields SOURCE Add Delete Set column 1 Multiplier 1 (2, 26) Column: 2	Assign fields SOU X Add Delete Set column 2 Multiplier 1 Lines From 2 To 156 Text table type © Delimited © Fixed width	
SOURCE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	SOU X -12,50000 38.53920 88.54920 137.54919 237.54919 238.54919 388.54919 387.55942 437.56940 487.57941 537.58942 637.58942 637.58942 687.59943 737.59943 737.60938 837.61938	
OK Cancel	Load template Save template File	

При импорте значений полей заголовка из текстового файла программа работает следующим образом. Для каждой строки текстового файла из указанных колонок считываются все поля, по которым будет определяться трасса (matching fields), а также поля, которые будут изменены (assign fields). В указанном наборе сейсмических данных определяются все трассы, у которых значения полей заголовков, перечисленных в Matching fields *moчно* совпадают со значениями из прочитанной строки. Затем, у этих трасс в поля изменяемых заголовков Assign fields заносятся значения из прочитанной строки.

Важно!: Из изложенного выше, в частности, следует, что поля, по которым определяется трасса, лучше выбирать целочисленными (и формировать файлы с геометрией с учетом этой особенности).

После нажатия на кнопку Ок поля заголовков будут присвоены. Результат импорта показан на следующем рисунке.

H	H line 1 - raw - Geometry Spreadsheet					
Eie	<u>Fields E</u> dit <u>T</u> ools E <u>x</u> it					
						~
	TRACENO	SOURCE	SOU_X	RECNO	REC_X	-
	99	1	-12.50000	98	0.00000	
	100	1	-12.50000	99	0.00000	
	101	1	-12.50000	100	0.00000	
	102	1	-12.50000	101	0.00000	
	103	1	-12.50000	102	0.00000	
	104	1	-12.50000	103	0.00000	
	105	1	-12.50000	104	0.00000	
	106	1	-12.50000	105	0.00000	
	107	1	-12.50000	106	0.00000	
					NUM	

Аналогично загрузите координаты пунктов приема из файла rec_geom.txt.

H	H line 1 - raw - Geometry Spreadsheet 📃 🗖 🔀					
Fie	<u>Fields Edit T</u> ools E <u>x</u> it					
						^
	TRACENO	SOURCE	SOU_X	RECNO	REC_X	-
	99	1	-12.50000	98	2451.00000	
	100	1	-12.50000	99	2476.00000	
	101	1	-12.50000	100	2501.00000	
	102	1	-12.50000	101	2526.00000	
	103	1	-12.50000	102	2550.00000	
	104	1	-12.50000	103	2575.00000	
	105	1	-12.50000	104	2601.00000	
	106	1	-12.50000	105	2626.00000	
	107	1	-12.50000	106	2651.00000	~
J					NUM	

Расчет расстояний между ПВ и ПП, координат точек ОГТ, бинирование

При помощи пункта меню Fields/Add fields добавьте к отображаемым полям заголовков следующие поля: OFFSET (расстояние источник-приемник, или вынос), AOFFSET (абсолютное значение выноса), CDP_X (координата точки OГТ), CDP (номер точки OГТ).

H	I line 1 - raw - Geometry Spreadsheet									
Fiel	ds <u>E</u> dit <u>T</u> ools	E⊻it								
Γ.										^
	TRACENO	SOURCE	SOU_X	RECNO	REC_X	OFFSET	AOFFSET	CDP_X	CDP	
	99	1	-12.50000	98	2451.00000	2463.00000	2463.00000	0.00000	0	
[100	1	-12.50000	99	2476.00000	2488.00000	2488.00000	0.00000	0	
[101	1	-12.50000	100	2501.00000	2512.00000	2512.00000	0.00000	0	
[102	1	-12.50000	101	2526.00000	2537.00000	2537.00000	0.00000	0	
	103	1	-12.50000	102	2550.00000	2562.00000	2562.00000	0.00000	0	
	104	1	-12.50000	103	2575.00000	2587.00000	2587.00000	0.00000	0	
Ì	105	1	-12.50000	104	2601.00000	2612.00000	2612.00000	0.00000	0	
Ì	106	1	-12.50000	105	2626.00000	2638.00000	2638.00000	0.00000	0	
Ì	107	1	-12.50000	106	2651.00000	2663.00000	2663.00000	0.00000	0	
Ì	108	1	-12.50000	107	2676.00000	2688.00000	2688.00000	0.00000	0	
	109	1	-12.50000	108	2701.00000	2713.00000	2713.00000	0.00000	0	
ÌÌ	110	1	-12.50000	109	2726.00000	2738.00000	2738.00000	0.00000	0	
	111	1	-12.50000	110	2751.00000	2763.00000	2763.00000	0.00000	0	
	112	1	-12.50000	111	2776.00000	2788.00000	2788.00000	0.00000	0	_
										<u> </u>
									NUM	

Для расчета указанных значений необходимо воспользоваться средством для выполнения математических операций над полями заголовков Trace Header Math, доступного из меню Tools/Header Math.

В открывшемся диалоговом окне следует ввести следующие выражения:

T	race Header Math		
	cdp_x = ([rec_x] + [sou_x]) / 2 offset = [rec_x] - [sou_x] aoffset = abs([offset])		
	OK Cancel	Load template	Save template

и нажать кнопку Ok.

Номера точек ОГТ мы будем рассчитывать, исходя из координаты точки ОГТ и желаемого размера бина. В силу того, что расстояние между приемниками составляло ~25 м, а шаг по ПВ - ~50 м, размер бина следует выбрать равным 12.5 м. Для расчета номеров точек ОГТ в том же окне Trace Header Math следует ввести выражение

Полученная таблица должна выглядеть подобным образом:

H	l line 1 - raw - Geometry Spreadsheet									
Eie	jields Edit Iools Exit									
										<u>^</u>
	TRACENO	SOURCE	SOU_X	RECNO	REC_X	OFFSET	AOFFSET	CDP_X	CDP	-
	99	1	-12.50000	98	2451.00000	2463.50000	2463.50000	1219.25000	97	
	100	1	-12.50000	99	2476.00000	2488.50000	2488.50000	1231.75000	98	
	101	1	-12.50000	100	2501.00000	2513.50000	2513.50000	1244.25000	99	
	102	1	-12.50000	101	2526.00000	2538.50000	2538.50000	1256.75000	100	
	103	1	-12.50000	102	2550.00000	2562.50000	2562.50000	1268.75000	101	
	104	1	-12.50000	103	2575.00000	2587.50000	2587.50000	1281.25000	102	
	105	1	-12.50000	104	2601.00000	2613.50000	2613.50000	1294.25000	103	
	106	1	-12.50000	105	2626.00000	2638.50000	2638.50000	1306.75000	104	
	107	1	-12.50000	106	2651.00000	2663.50000	2663.50000	1319.25000	105	
	108	1	-12.50000	107	2676.00000	2688.50000	2688.50000	1331.75000	106	
	109	1	-12.50000	108	2701.00000	2713.50000	2713.50000	1344.25000	107	
	110	1	-12.50000	109	2726.00000	2738.50000	2738.50000	1356.75000	108	
	111	1	-12.50000	110	2751.00000	2763.50000	2763.50000	1369.25000	109	
	112	1	-12.50000	111	2776.00000	2788.50000	2788.50000	1381.75000	110	
										<u> </u>
									NUM	

Для сохранения изменений в базе данных следует при выходе из Geometry Spreadsheet выбрать Да, или воспользоваться опцией меню Edit / Save changes.

Сортировка данных по ОГТ и контроль присвоения геометрии

Для того чтобы проверить корректность присвоения геометрии выполните следующие действия.

Создайте новый поток, назвав его 020 – geometry check

RadExPro+ 3.7 >>> My Project	
Help Options Database Tools Exit	
<u>My Area</u> <u>Line 1</u> <u>010 - data load</u> 020 - geometry check	
MB1 DblClick - Default action; MB2 - Context menu; MB1 - Drag flow to line to copy	// 🕶

Постройте поток обработки, состоящий из модулей Trace Input и Screen Display.

🕍 My Project/My Area/Line 1/020 - geometry check						
Help Options Database Tools R	un Flow mode <mark>Exit</mark>					
Trace Input <- line 1 - raw	rrave jiela subtraction	Steeling/Encombles				
Screen Display	Ensemble Stack	Asymptotic CCP Binning				
	Deconvolution	Predictive Deconvolution				
	Surface-Consistent Deconve Nonstationary predictive de	olutiCustom Impulse Trace Transforms convolution				
		Interactive Tools				
	VSP Display	Screen Display				
	3D View	3D Screen Display				
	Velocity Editor	QC Analysis				
MB1 - Drag module; Ctrl+MB1 - Copy mo	odule; MB1_DblClick - Module Paramet	ers; MB2 - Toggle module; Ctrl+MB2 DblClick - Delete 🏾 📈 😒				

Trace Input должен передать данные в поток в сортировке CDP:OFFSET. Для этого задайте параметры как показано на рисунке.

Trace Input	X
Data Sets	Sort Fields CDP OFFSET Add Delete Selection *.*
OK Cancel	C Select from file File C Database object Choose C Get all

Такой выбор полей сортировки Sort Fields приведет к тому, что трассы будут попадать в поток отсортированными по номеру точки ОГТ (поле CDP). Внутри каждого ансамбля с одинаковым номером ОГТ трассы будут отсортированы по выносу (OFFSET).

В поле Selection должна вводится строка с маской выборки трасс для каждого из указанных ключей сортировки. Параметры выборки по каждому из ключей разделяются двоеточием. В данном случае запись *:* означает, что по каждому из двух ключей сортировки будут введены в поток все трассы.

В модуле Screen Display задайте параметры как показано на рисунке.

Display parameters	X
From t= 0.0 to 2996. t Scale 10 Number of traces 200 Additional scalar 0.3 Bias 0 ≈ Fortate Variable spacing field Space to maximum ensemble width Executive and 2	Display mode C WT/V C WT C VA G Gray C R/B C Custor Define Normalizing factor C None Entire screen C Individual
Muliple panels I Use excursion 2.0 traces	Axis Header mark Plot headers Show headers Picks settings
Save Template Load Template	Ok Cancel

Включенный параметр Ensemble boundaries приведет к тому, что на экране ансамбли трасс будут разделены пустыми промежутками. Ансамбль в RadExPro определяется первым ключом сортировки, заданном в Trace Input, т.е. в данном случае значением поля CDP.

Нажмите кнопку Axis... и задайте следующие параметры осей:

Axis Parameters	
Primary lines	Traces CDP
Secondary lines 100.0	OFFSET OFFSET Interval
Font size 10	Margins
Ok Cancel	Left axis 20 mm Top axis 20 mm margin 20 mm

Запустите поток при помощи команды меню Run. На экране будут отображены исходные данные, отсортированные по ОГТ.

Для контроля присвоения геометрии отобразите теоретический годограф отраженной волны, рассчитанный из полей заголовков. Для этого воспользуйтесь пунктом меню Tools/Approximate/Hyperbola (reflection)

Используйте параметры гиперболы, заданные по умолчанию:

На экране голубой линией будет изображен годограф отраженной волны от границы полупространства. Параметры среды и границы отображаются в левом верхнем углу окна Screen Display.

При помощи стрелок на клавиатуре (вправо/влево) изменяйте скорость в среде, пока не добьетесь приблизительного совпадения голубой линии и первых вступлений.

Если это удалось сделать, и годограф прямой волны для всех сейсмограмм ОГТ совпадает с теоретическим, то это означает, что расстояния между ПВ и ПП рассчитаны верно.

Если совпадения добиться не удается (например годограф оказывается смещенным относительно теоретического положения), то это указывает на ошибку в геометрии трасс. В этом случае необходимо повторить ввод геометрии или как-либо иначе найти и исправить ошибку.

Анализ данных и потрассная обработка

Сортировка трасс по ОГТ и анализ волновой картины

Для предобработки сейсмических данных создайте новый поток в проекте RadExPro, как показано на рисунке.

🔀 RadExPro+ 3.75 >>> My Project	
Help Options Database Tools Exit	
My Area Line 1 010 - data load 020 - geometry check 030 - preproc	
MB1 DblClick - Default action; MB2 - Context menu; MB1 - Drag flow to line to copy	//. 😒

В поток 030 – preproc вставьте модули Trace Input и Screen Display.

В модуле Trace Input установите такие параметры:

Trace Input	
Data Sets	Sort Fields OFFSET
Add Delete	Add Delete Selection 0-10000(10):*
OK Cancel	Select from file File Database object Choose Get all File

Строка, описывающая сортировку 0-10000(10):* означает следующее:

- Из из всех точек ОГТ, попадающих в диапазон 0-10000 (а туда попадут все точки ОГТ из учебного набора данных), будут взяты только те, номера которых кратны 10;
- Внутри ансамблей ОГТ, трассы будут отсортированы по возрастанию значений поля OFFSET.

Такая сортировка нужна сейчас для того, чтобы уменьшить объем данных (в 10 раз) на этапе тестирования параметров процедур. При этом мы сможем контролировать результат применения процедур на не одном, а многих ансамблях, равномерно выбранных вдоль профиля.

Параметры Screen Display задайте такими, чтобы на экран помещалось 3-5 ансамблей. Поток будет выглядеть следующим образом:

My Project/My Area/Line 1/030 -	ргергос	
Help Options Database Tools Run Fl	ow mode E <u>x</u> it	
Trace Input <- line 1 - raw Screen Display	Trace Input Trace Output VSP Data Modeling 3D Data Output 2D Finite Difference Modeling GSSI JOFHC SCS-3 Input SEG-Y Input Text Output	Data Input Data Output 3D Data Input SEG-D Input Super Gather RAMAC/GPR Lamb: Solid Layer - Solid modeling SEG-B Input SEG-Y Output
	Amplitude Correction	Bandpass Filtering
	DC Removal	riuberi i ransjorm
MB1 - Drag module; Ctrl+MB1 - Copy module;	MB1_DblClick - Module Parameters; MB2 - Togg	le module; Ctrl+MB2 DblClick - Delete

Выполните поток, на экране должны появиться сейсмограммы ОГТ.

Определите, к каким типам волн относятся волны, наблюдаемые на сейсмограммах. Найдите прямую волну, отраженные волны, поверхностные волны.

Оцените скорость прямой волны, групповую скорость поверхностных волн. Для этого воспользуйтесь возможностью Screen Display «прикладывать» к данным теоретический годограф прямой волны. Т.к. скорость рассчитывается, как расстояние от источника деленное на время прихода волны, сначала нужно указать поле заголовка, которое будет использовано для расчета расстояния между трассами при расчете кажущейся скорости. Воспользуйтесь пунктом меню Tools/Approximate/Line Header word... и выберите поле OFFSET.

Для оценки кажущейся скорости используйте Tools/Appoximate/Line. Для того чтобы «приложить» прямую линию к данным задайте начало аппроксимируемого отрезка на сейсмограмме щелчком левой кнопки мыши, затем конец отрезка – правой кнопкой. Текущее значение кажущейся скорости отобразится в зеленой строке в левом верхнем углу экрана.

Полученные значения скоростей запишите в текстовый файл. Это можно сделать автоматически, если в то время, когда активен режим оценки кажущейся скорости выбрать пункт меню Tools/Approximate/Save parameters.

Откроется дополнительное окно. Скопировать туда текущую скорость можно, нажав в окне

Screen Display комбинацию клавиш Ctrl+Q. К скопированным значениям в окне можно дописывать комментарии. По окончании работы со скоростями сохраните файл, выбрав команду File/Save в меню дополнительного окна и закройте окно.

📕 My Project/My Area/Line 1/030 - preproc

Оцените спектр сигнала в различных частях сейсмограммы. Для этого воспользуйтесь опцией меню Tools/Spectrum/Average.

Компенсация затухания амплитуд

Для компенсации затухания амплитуд добавьте в поток модуль Amplitude Correction. Поставьте его между модулями Trace Input и Screen Display. Меняя параметры модуля и каждый раз запуская поток на выполнение вы можете протестировать различные режимы компенсации затухания амплитуд. Для целей последующей обработки хорошим выбором является просто компенсация сферического расхождения. Для того чтобы ее ввести, используйте параметры модуля, как показано на рисунке.

Amplitude Correction	
Action to apply :	
Spherical divergence correction (1/s)	1.000000
Exponential correction (dB/s)	0.000000
Automatical Gain Control. Operator length (ms)	100.000000
Type of AGC scalar	MEAN
Basis for scalar application	CENTERED
Trace equalization. Basis for scaling :	MEAN
Time gate start time (ms)	0.000000
Time gate end time (ms)	512.000000
🗖 Time Variant ScalingSpecify amplifying law alo	ng trace, (t - (ms])
Example format : t1:k1,t2-t3:k2,,tN:kN	
OK Cancel	

Сравните, как выглядят данные до и после поправки за сферическое расхождение. Для этого запустите поток два раза – с активным и «закоментированным» модулем Amplitude Correction. («закоментировать» модуль можно кликнув по нему правой кнопкой мыши). В результате на экране окажутся два окна Screen Display, в одном из которых будут обработанные данные, а в другом исходные.

Расширение спектра

После коррекции за сферическое расхождение добавьте в поток модуль Predictive Deconvolution. В тех случаях, когда целью применения предсказывающей деконволюции является расширение спектра, разумно использовать в качестве интервала предсказания один отсчет, длину фильтра выбрать близкой к длине импульса, окно настройки деконволюции задать таки образом, чтобы в нем содержались целевые отраженные волны. Исходя из таких соображений, некоторые начальные параметры могут быть заданы следующим образом:

Predictive Deconvolution	×
Decon gate start time 2000.00	
Decon gate end time 4000.00	
Prediction gap 4.00	
Decon operator length 50.00	
'White noise' level % 0.010	_
	-
OK Cance	I

Поэкспериментируйте с различными параметрами, исследуйте, как влияет уровень белого шума на результат. На следующих двух рисунках показаны данные до и после использования предсказывающей деконволюции.

После использования деконволюции

Полосовая фильтрация

Для уменьшения уровня низкочастотных и высокочастотных помех и формирования спектра сигнала, отвечающего импульсу простой формы, после применения деконволюции разумно использовать полосовую фильтрацию. Добавьте в поток после деконволюции модуль Bandpass Filtering. В параметрах модуля выберите фильтр Ормсби с параметрами 5-10-40-80 Гц. На следующем рисунке показаны несколько сейсмограмм после применения полосовой фильтрации с такими параметрами.

Балансировка амплитуд трасс

На амплитуду сигнала, записанного каждым сейсмоприемником, кроме всего прочего, влияют условия возбуждения и приема. В тех случаях, когда не стоит задача использования данных для динамической интерпретации (например, для целей AVO-анализа), можно не использовать сложные процедуры поверхностно-согласованных амплитудных поправок, а попытаться обойтись простой балансировкой трасс. Для этого в поток следует снова добавить модуль Amplitude Correction со следующим набором параметров:

Amplitude Correction		
Action to apply :		
Spherical divergence correction (1/s)	1.000000	
Exponential correction (dB/s)	0.000000	
Automatical Gain Control. Operator length (ms)	100.000000	
Type of AGC scalar	MEAN	
Basis for scalar application	CENTERED	
Trace equalization. Basis for scaling :	MEAN	
Time gate start time (ms)	1700.000000	
Time gate end time (ms)	4000.000000	
Time Variant ScalingSpecify amplifying law along trace, (t - (ms))		
Example format : t1:k1,t2-t3:k2,,tN:kN		
OK Cancel		

Обратите внимание, что при балансировке трасс для оценки средней амплитуды на трассе мы выбираем окно, в которое входят интересующие нас отражения и это окно не содержит участков трасс до первых вступлений.

К настоящему моменту наш поток выглядит следующим образом:

My Project/My Area/Line 1/0)30 - preproc	
<u>H</u> elp <u>O</u> ptions <u>D</u> atabase Tools Ru	ın Flowmode <mark>Exi</mark> t	
Trace Input <- line 1 - raw Amplitude Correction Predictive Deconvolution Bandpass Filtering Amplitude Correction	3D View Velocity Editor Advanced VSP Dispaly 3D Gazer	3D Screen Display QC Analysis Interactive Velocity Analysis Stream Plotting Migration
Screen Display	VSP Migration Curved Profile VSP Migration STOLT3D	T-K Migration Stolt F-K Migration
	Trace Math Trace Length	X Interpolation
	2D Spatial Filtering Antenna Ringdown Removal Radial Trace Transform	F-K Filtering Radon Transforms 2D Spatial Filtering (1)
	3C Orientation	sym2ort Ceometry/Headers
	Trace Header Math	Header Averager
MB1 - Drag module; Ctrl+MB1 - Copy mo	odule; MB1_DblClick - Module Parameters;	MB2 - Toggle module; Ctrl+MB2 DblClick - Delete 🏼 📈 💌

Задание параметров мьютинга

Если целью обработки является получение разреза отраженных волн, то, в этом случае, прямая волна является, очевидно, помехой. Наиболее эффективный способ подавления такой помехи – верхний мьютинг от начала трассы до времени, равному времени прихода прямой волны, плюс некоторое время после, содержащее импульс прямой волны.

Для того чтобы задать этот мьютинг, временно пересортируйте трассы в модуле Trace Input в порядок ВЫНОС:ТОЧКА_ОГТ. Для этого измените параметры модуля Trace Input на следующие:

Trace Input	×
Data Sets	Sort Fields OFFSET CDP U U U U U U U U U U U U U
Add Delete	Add Delete Selection *:0-10000(10)
OK Cancel	C Select from file File C Database object Choose C Get all

Выполните поток, на экране будут показаны трассы, отсортированные по увеличению поля заголовка OFFSET. На такой сейсмограмме удобно задать время мьютинга, подходящее для всех сейсмограмм OГT.

Для этого создайте новую пикировку (Tools/Pick/New Pick), отпикируйте время мьютинга приблизительно как показано на рисунке (годограф прямой волны плюс ~100-200 мс).

Пикировка в RadExPro представляет собой набор значений, привязанных по двум полям заголовков, т.к. считается, что при обработке данных ОГТ всегда можно задать два поля заголовка, которые будут однозначно идентифицировать трассу (например номер ОГТ и вынос, или номер пункта возбуждения и номер канала). В данном случае, однако, мы хотим, чтобы время мьютинга подходило для всех сейсмограмм ОГТ и зависело только от выноса. По-этому мы должны привязать пикировку только по одному полю заголовка -- OFFSET.

Чтобы сделать это, выберите пункт меню Tools/Pick/Pick Headers

В открывшемся окне выберите в обеих колонках OFFSET:OFFSET

После этого нажмите Ok и сохраните пикировку через команду меню Screen Display Tools/Pick/Save As... Укажите имя пикировки – top_mute.

Верхний мьютинг

Вернитесь в учебном потоке 030 – preproc к исходной сортировке (CDP:OFFSET), изменив соответственно параметры Trace Input.

Добавьте в конец потока (перед модулем Screen Display) модуль Trace Editing со следующими параметрами:

Trace Editing		
Muting Horizon		
 Top muting Bottom muting Trace killing Muting in window 	10 ms	
I aper window length	10	
Save template	Load template OK	Отмена

На второй вкладке укажем определяющий мьютинг горизонт, как пикировку top_mute которую мы сохранили на предыдущем этапе. Вкладка Horizon должна выглядеть так:

Trace Editing	×
Muting Horizon	
Pick in database Select top_mute Trace header Browse	
C Specify	
Save template Load template ОК Отмена	

Теперь поток выглядит следующим образом:

My Project/My Area/Line 1/0)30 - preproc	
<u>H</u> elp <u>O</u> ptions <u>D</u> atabase Tools Ru	ın Flowmode <mark>Exi</mark> t	
Trace Input <- line 1 - raw Amplitude Correction Predictive Deconvolution	Advanced VSP Dispaly 3D Gazer	Interactive Velocity Analysis Stream Plotting Migration
Bandpass Filtering Amplitude Correction Trace Editing	VSP Migration Curved Profile VSP Migration STOLT3D	T-K Migration Stolt F-K Migration
screen Display	Trace Math Trace Length	X Interpolation Trace Editing
	2D Spatial Filtering Antenna Ringdown Removal Radial Trace Transform	F-K Filtering Radon Transforms 2D Spatial Filtering (1)
	3C Orientation	sym2ort Coometry/Headers
	Trace Header Math Shift Header	Header Averager
MB1 - Drag module; Ctrl+MB1 - Copy mo	 odule; MB1_DblClick - Module Parameters;	MB2 - Toggle module; Ctrl+MB2 DblClick - Delete 📈 😒

Выполните его и убедитесь, что результат выглядит приблизительно так:

Выполнение потока предобработки

На этом можно считать, что параметры предварительной обработки данных подобраны и выполнить поток с полным набором данных. Для этого измените параметры Trace Input таким образом, чтобы теперь в поток попали все точки ОГТ:

Trace Input	X
Data Sets	Sort Fields
line 1 - raw	
Add Delete	Add Delete
	0-10000(1):*
	Select from file File
OK Cancel	O Get all

Так как теперь объем данных в потоке будет достаточно большим, мы будем выполнять его по кадрам. В окне редактора потоков выберите меню Flow mode и задайте размер кадра таким образом, данные полностью умещались в оперативную память:

Flow Mode
Flow Data Processing Mode C All at once (all in memory) Framed Frame Selection Honor ensemble boundaries Frame width (traces) 1500
OK Cancel

Добавьте в конец потока модуль Trace Output чтобы сохранить результаты предварительной обработки данных и создайте в нем новый набор данных с названием *line 1 – preproc*.

Закомментируйте Screen Display.

Окончательно поток обработки выглядит следующим образом:

🗱 My Project/My Area/Line 1/030 - prepro	с	
Help Options Database Tools Run Flow mode.	Exit	
Trace Input <- line 1 - raw Amplitude Correction Predictive Deconvolution Bandpass Filtering Amplitude Correction Trace Editing Trace Output -> line 1 - preproc ***Screen Display	Trace Input Trace Output VSP Data Modeling 3D Data Output 2D Finite Difference Modeling GSSI JOFHC SCS-3 Input SEG-Y Input Text Output	Data Input Data Output 3D Data Input SEG-D Input Super Gather RAMAC/GPR Lamb: Solid Layer - Solid modeling SEG-B Input SEG-Y Output
		Signal Processing
	Amplitude Correction	Bandpass Filtering
	DC Removal	Hilbert Transform
	Resample	Trace Math Transforms
	VSP SDC	Trace Math Transforms (1)
	Wave field subtraction	
	Ensemble Stack	Stacking/Ensembles Asymptotic CCP Binning
MB1 - Drag module; Ctrl+MB1 - Copy module; MB1_DblC	lick - Module Parameters; MB2 - Toggle module; Ctr	I+MB2 DblClick - Delete

Выполните поток.

Анализ скоростей суммирования и получение суммарных разрезов

Подготовка данных к анализу скоростей, формирование суперсейсмограмм

Как правило, с целью повышения отношения сигнал/помеха и получения более «читаемых» спектров скоростей, анализ скоростей проводят не по одиночным выборкам ОГТ, а по ансамблям, состоящим из нескольких соседних ансамблей ОГТ, так называемым, суперсейсмограммам.

Другой особенностью подготовки данных к анализу скоростей является то, что данные должны обладать максимальным отношением сигнал/помеха, а вот высокая разрешенность записи по времени и сохранение динамики отраженных волн не являются важными. Поэтому часто при подготовке данных к анализу скоростей к ним применяют такие процедуры как автоматическая регулировка усиления (в относительно коротком окне) и полосовая фильтрация (причем параметры выбирают таки образом, чтобы оставить ту часть спектра, где отношение сигнал/помеха максимально).

Создайте поток 040 – velocity analysis.

🗱 RadExPro+ 3.75 >>> My Project	
Help Options Database Tools Exit	
My Area Line 1 010 - data load 020 - geometry check 030 - preproc 040 - velocity analysis	
MB1 DblClick - Default action; MB2 - Context menu; MB1 - Drag flow to line to copy	//. 💙

Поставьте в начало потока процедуру Super Gather, которая будет формировать суперсейсмограммы.

Параметры процедуры разумно выбрать приблизительно такими, как показано на рисунке.

Super gather			
2D Gather	× Start 0	×End 1	00000
	X Step 50	X Range 1	0
🔿 3D Gathe	Y Start	Y End	1
	Y Step	Y Range	1
🔲 Bin offsets	Off. Start	Off. End	-
	Off. Step	Off. Range	1
Dataset	line 1 - preproc		
Save te	emplate Load template	OK OK	Отмена

То есть, скоростной анализ будет проводиться с шагом 50 точек ОГТ, в каждую выборку супер-ОГТ входит 10 соседних сейсмограмм ОГТ. Суперсейсмограммы формируются из подготовленного на предыдущем этапе набора предобработанных данных *line 1 – preproc*.

Если после Super Gather добавить в поток модуль Screen Display, то можно посмотреть, как будут выглядеть суперсейсмограммы.

🟙 My Project/My Area/Line 1/040 - ve	locity analysis	
Help Options Database Tools Run Flow	mode Exit	
Super Gather	Resample	Trace Math Transforms
Screen Display	VSP SDC	Trace Math Transforms (1)
	Wave field subtraction	Stacking/Ensembles
	Ensemble Stack	Asymptotic CCP Binning
	Deconvolution	Predictive Deconvolution
	Surface-Consistent Deconvolution	Custom Impulse Trace Transforms
	Nonstationary predictive deconvolution	n
		Interactive Tools
	VSP Display	Screen Display
	3D View	3D Screen Display
	Velocity Editor	QC Analysis
	Advanced VSP Dispaly	Interactive Velocity Analysis
	3D Gazer	Stream Plotting
		Migration
	VSP Migration	T-K Migration
	Curved Profile VSP Migration	Stolt F-K Migration
		Trace Editing
MB1 - Drag module; Ctrl+MB1 - Copy module; MB	1 OblClick - Module Parameters; MB2 - Toggle mod	V Zukana złudana ule; Ctrl+MB2 DblClick - Delete

На следующем рисунке показан результат выполнения такого потока.

Легко видеть, что, за счет использования существенно большего объема данных, оси синфазности отраженных волн прослеживаются гораздо уверенней, чем на одиночных сейсмограммах ОГТ.

Анализ скоростей суммирования

«Закомментируйте» модуль Screen Display или удалите его из потока. Для проведения скоростного анализа, добавьте в конец потока модуль Interactive Velocity Analysis.

Рассмотрим порядок задания и разумные значения параметров этого модуля. Сначала необходимо указать, куда сохранять пикировки скоростей. Поле скоростей можно хранить в текстовом файле или в объекте базы данных. Мы настоятельно рекомендуем сохранять скорости как объект базы данных (и читать их также из объекта базы данных, а все возможные манипуляции типа экспорта/импорта проводить при помощи специального средства *Database Manager*, доступного в меню *Database/Database Manager*). Поэтому в диалоге задания параметров модуля перейдите во вкладку Output Velocity, убедитесь в том, что выбрана опция Database – picks.

Interactive Velocity Analysis
PS/PP velocities Semblance Display Gather Display FLP Display CVS Display Super gather Input velocity Output velocity Semblance
C Single velocity function
C Use file:
Browse
Database - picks vel0 Browse
C Database - grid Browse
Velocity domain Time C Depth RMS C Interval
Save template Load template ОК Отмена

Кликните на соответствующую этой опции кнопку Browse и в появившемся диалоговом окне укажите объект базы данных, в котором будут храниться пикировки скоростей, как это показано на следующем рисунке.

Choose velocity picks	
Object name vel0	
<u>O</u> bjects	Location
	 My Area Line 1 010 - data load 020 - geometry check 030 - preproc 040 - velocity analysis
Rename Delete	Ok Cancel

Разумно хранить пикировки скоростей на втором уровне базы данных, отвечающем профилю.

Теперь укажем ту-же пикировку скоростей в качестве входного скоростного закона. Это может нам понадобиться, если мы захотим вернутся к скоростному анализу позднее и продолжить работу с пикировкой. Для этого перейдите во вкладку Input Velocity и задайте точно такие же параметры, как и в предыдущем случае.

Interactive Veloci	ity Analysis		
PS/PP velocities 5 Super gather	Semblance Display G Input velocity	ather Display FLP Dis Output velocity	play CVS Display Semblance
C Single velocity	function		
C Use file:			
		Browse	
Database - pick	<s td="" vel0<=""><td>Browse</td><td></td></s>	Browse	
C Database - grid		Browse	
Velocity domain © Time O I	Depth Velocity	type C Interval	
	Save template Load	l template OK	Отмена

Важно!: При задании новой пикировки скоростей необходимо сначала указывать ее на вкладке Output Velocity и только потом – на вкладке Input Velocity. В противном случае программа выдаст ошибку.

Теперь перейдите во вкладку Super gather и отключите опцию бинирования по выносам. Эта опция позволяет, перед тем как рассчитывать спектр скоростей, подсуммировать трассы с близкими выносами, что приводит к тому, что спектр скоростей рассчитывается существенно быстрее, но читаемость его несколько ухудшается.

Interactive Velo	city Analysis		
PS/PP velocities Super gather	Semblance Display	Gather Display FLP Dis Output velocity	play CVS Display Semblance
2D Gathe	X Start	×End 0	-
	X Step	X Range 0	-
C 3D Gathe	Y Start	Y End	
	Y Step	Y Range 0]
E Bin offsets	Off. Start	Off. End 1000]
	Off. Step 100	Off. Range 100	<u> </u>
Dataset			
	Save template Loa	d template OK	Отмена

Перейдите во вкладку Semblance для того, чтобы задать параметры расчета спектра скоростей: начальную и конечную скорости перебора, шаг по скоростям и шаг по времени.

Interactive Velocity Analysis
PS/PP velocities Semblance Display Gather Display FLP Display CVS Display Super gather Input velocity Output velocity Semblance
Start velocity 500 End velocity 5000
Number of CVS 11
Save template Load template OK Отмена

Выставленные по умолчанию параметры для рассматриваемого набора данных являются вполне приемлемыми.

Остальные вкладки модуля отвечают за параметры отображения различных элементов окна скоростного анализа.

Во вкладке, отвечающей параметрам отображения спектра скоростей Semblance Display, разумно оставить параметры по умолчанию.

Interactive Velocity Analysis	
Super gather Input velocity Output velocity Semblance Display PS/PP velocities Semblance Display Gather Display FLP Display Display mode Scaling Normal type WT /VA None Maximur VA Individual Mean Color Additional scalar 1 Palette Bias 0	emblance CVS Display
Save template Load template OK	Отмена

Для изображения ансамбля трасс, для которого проводится скоростной анализ, разумно использовать метод переменной плотности и выбрать какую-либо палитру, в которой будет удобно смотреть на трассы до и после ввода кинематических поправок (по умолчанию установлена палитра в оттенках серого, здесь мы ее заменим на палитру от черного до оранжевого через белый). Для этого сначала во вкладке Gather display выберите опцию Display mode / Color.

Interactive Velocity Analysis
Super gather Input velocity Output velocity Semblance PS/PP velocities Semblance Display Gather Display FLP Display CVS Display Display mode Scaling Normal type
Save template DK Отмена

Затем кликните на кнопку Palette и в появившемся диалоговом окне нажмите на кнопку Load palette...

Custom Palette	
	OK Cancel
Load palette Save palette	

Набор предустановленных палитр храниться в папке, в которую установлен пакет RadExPro в подкаталоге PALETTES. Выберите палитру blkwtord.pal.

Открыть					? 🛛
<u>П</u> апка:	PALETTES		•	+ 🗈 💣 🎫	
Недавние документы Рабочий стол Мои документы Мой компьютер	blkwtord.pal				
Сетевое	<u>И</u> мя файла:	blkwtord.pal		<u> </u>	открыть
окружение	<u>Т</u> ип файлов:	Palette files		<u> </u>	Отмена

Результат должен быть таким, как показан на следующем рисунке.

Custom Palette	
	OK
Load palette	

Динамически рассчитываемый фрагмент суммарного разреза (FLP Display) и панели перебора скоростей (CVS Display) удобно смотреть изображенными методом отклонений с зачернением положительных значений. Поэтому для них параметры можно оставить такими, как они установлены по умолчанию.

Interactive Velocity Analysis
Super gather Input velocity Output velocity Semblance PS/PP velocities Semblance Display Gather Display FLP Display CVS Display Display mode Scaling Normal type Maximur Maximur Mean RMS Palette Bias Image: Semblance Display Image: Semblance Display
Save template Load template ОК Отмена

После задания параметров, запустите поток на выполнение.

В результате появится окно интерактивного анализа скоростей. Оно состоит из 4 частей (слева направо): спектра скоростей, суперсейсмограммы, фрагмента суммарного разреза и панелей перебора скоростей суммирования.

Фрагмент суммарного разреза (или «динамический стэк») состоит из трасс, полученных при суммировании сейсмограмм ОГТ, вошедших в суперсейсмограмму, с введенными кинематическими поправками согласно текущему скоростному закону. При изменении скоростного закона фрагмент пересчитывается.

На каждой из панелей перебора скоростей представлен результат суммировании сейсмограмм ОГТ, вошедших в суперсейсмограмму, с той или иной постоянной скоростью.

Пикировка скоростного закона производится по спектру скоростей, по максимумам энергии спектра. Пример определения скоростей суммирования для предыдущего рисунка показан ниже:

Модуль Interactive Velocity Analysis позволяет совершать следующие действия, полезные для оценки корректности выполняемой пикировки:

• Нажав на кнопку N расположенную на панели инструментов, можно включить режим, в котором с текущим скоростным законом в данные будет введены кинематические поправки. При этом годографы отраженных волн должны спрямиться.

 Нажав на кнопку Dix, расположенную на панели инструментов, можно получить результат пересчета скоростей суммирования в интервальные скорости по формуле Дикса (фиолетовая кривая). Кстати, выполнив это действие, можно, незначительно изменяя скорости суммирования (двигая чуть-чуть одну из точек пикировки скоростей), убедиться в том, что пересчет среднеквадратических скоростей в интервальные по формуле Дикса крайне неустойчив. Незначительные изменения скорости суммирования могут приводить к катастрофическим изменениям пластовых скоростей. Этот эффект тем больше, чем меньше анализируемый интервал.

После того, как будет задан скоростной закон для этой точки, можно перейти к следующей, нажав на кнопку со стрелкой вправо, расположенную на панели инструментов. Если вы выполняете скоростной анализ в покадровом режиме (Framed mode), то вы можете перемещаться по суперсейсмограммам вправо-влево в пределах одного кадра, если нет – в пределах всего профиля.

Выполните скоростной анализ для всех суперсейсмограмм, после чего перед выходом из модуля нажмите кнопку Save, чтобы сохранить созданный скоростной закон.

Получение суммарного разреза

Создайте поток 050 – stack.

RadExPro+ 3.75 >>> My Project	
Help Options Database Tools Exit	
My Area Line 1 010 - data load 020 - geometry check 030 - preproc 040 - velocity analysis 050 - stack	
MB1 DblClick - Default action; MB2 - Context menu; MB1 - Drag flow to line to copy	//. 🕶

Поток должен содержать следующие процедуры:

Тгасе Input, который передаст в поток набор данных *line 1 – preproc* в сортировке ОГТ:ВЫНОС

Trace Input	×
Data Sets	Sort Fields
line 1 - preproc	CDP OFFSET
Add Delete	Add Delete
	×.×
	Select from file File
	C Database object Choose
OK Cancel	C Get all

Модуль ввода кинематических поправок NMO/NMI. Параметры модуля следует задать так. Во вкладке NMO выбрать режим NMO, мьютинг по растяжению сигнала установить равным

30 (т.е. те части трассы, которые в результате ввода кинематических поправок растянуться более чем на 30% будут обнулены).

NMO/NMI	×
NMO Velocity	
MMD Mute percent 30	
C NMI	
Use coordinate interpolation	
Save template Load template OK Отмен	ia

Во вкладке Velocity нужно выбрать скоростной закон, получившийся в результате выполненного раньше скоростного анализа.

<u>имолимі</u>	×
NMO Velocity	
C Single velocity function	
◯ Use file:	
Browse	
Database - picks vel0 Browse	
C Database - grid Browse	
Velocity domain © Time C Depth © RMS C Interval	
Save template Load template OK OTME	ia

После модуля NMO/NMI, который должен ввести кинематические поправки, в поток необходимо поставить модуль Ensemble Stack. Этот модуль суммирует все трассы в пределах каждого ансамбля. Так как в модуле Trace Input в начале потока первым ключом сортировки указано поле CDP, ансамблями, в данном случае, будут считаться сейсмограммы ОГТ.

Задайте параметры модуля Ensemble Stack как показано на следующем рисунке.

Enser	nble Stack		
	Mode Mean Median Alpha trimmed Coherent stack Window (traces) Filter length (ms)	30 30 3 60	*
	▼ Treat zero as res	sult of muting	
	OK	Cancel	

Наконец, последним модулем должен быть Trace Output, который сохрант результат в набор данных *line 1 – stack*, который также разумно создать на втором структурном уровне базы данных.

Trace Output	
File line 1 - stack ; My Are ✓ Store headers outside database OK Cancel	ea\Line 1 \line 1 - stack Output sample format
Select dataset	
Dbjects line 1 - raw line 1 - preproc line 1 - stack	Location My Area
Rename Delete	Ok Cancel

Поток выглядит, как показано на следующем рисунке:

📓 My Project/My Area/Line 1/050 - stack					
<u>H</u> elp <u>O</u> ptions <u>D</u> atabase Tools Run F	low mode Exit				
Trace Input <- line 1 - preproc NMO/NMI Ensemble Stack Trace Output -> line 1 - stack	Trace Input Trace Output VSP Data Modeling 3D Data Output 2D Finite Difference Modeling GSSI ЛОГИС SCS-3 Input SEG-Y Input	Data I/O Data Input Data Output 3D Data Input SEG-D Input Super Gather RAMAC/GPR Lamb: Solid Layer - Solid modeling SEG-B Input SEG-Y Output			
	Text Output Amplitude Correction DC Removal Resample VSP SDC Wave field subtraction	Signal Processing Bandpass Filtering Hilbert Transform Trace Math Transforms Trace Math Transforms (1) Stacking/Ensembles			
	Ensemble Stack	Asymptotic CCP Binning Deconvolution			
	Deconvolution Surface-Consistent Deconvolution Nonstationary predictive deconvolu	Predictive Deconvolution Custom Impulse Trace Transforms ution Interactive Tools			
	VSP Display 3D View Velocity Editor	Screen Display 3D Screen Display OC Analysis			
MB1 - Drag module; Ctrl+MB1 - Copy module; MB1 DblClick - Module Parameters; MB2 - Toggle module; Ctrl+MB2 DblClick - Delete					

Для выполнения этого потока переключите пакет в покадровый режим (Framed mode), задав какой-либо разумный размер кадра и убедившись в том, что поток буде выполняться в режиме дополнения кадра до следующего целого ансамбля (Honor ensemble boundaries).

Flow Mode	×
Flow Data Processing Mode C All at once (all in memory) Framed Frame Selection Honor ensemble boundaries Frame width (traces) 1500	
OK Cancel	1

Выполните поток.

Визуализация суммарного разреза

Создайте поток 060 – view stack.

🞇 RadExPro+ 3.75 >>> My Project	
<u>H</u> elp <u>O</u> ptions <u>D</u> atabase Tools E <u>x</u> it	
My Area Line 1 010 - data load 020 - geometry check 030 - preproc -040 - velocity analysis -050 - stack 060 - view stack	
MB1 DblClick - Default action; MB2 - Context menu; MB1 - Drag flow to line to	copy 🅢 🔽

Поток должен состоять из модулей Trace Input и Screen Display. Trace Input должен прочитать полученный суммарный разрез (*line 1 – stack*) отсортированный по ОГТ.

Результат должен выглядеть приблизительно так, как это показано на следующем рисунке.

Печать результатов обработки

Создайте поток 070 – *plotting*.

Поток предназначен для печати результата привязка данных ВСП и ОГТ на любое печатное устройство, совместимое с операционной системой Windows, либо в один из стандартных форматов просмотра текста и изображения: *.pdf, *.jpg, *.tif, *.bmp и т.д. (для печати в графические форматы воспользуйтесь одним из многочисленных доступных в интернете бесплатных виртуальных принтеров, например Bullzip PDF Printer, doPDF, Easy JPEG Printer и др.).

Поток будет состоять из единственного модуля **Plotting** (это так называемый Stand Alone модуль, самостоятельно формирующий поток). Модуль позволяет настраивать параметры отображения данных (сортировка, способ изображения, масштаб, усиление, печать пикировок и графиков заголовков, ширина линий, размер шрифтов и т.д.), печатать текстовую и графическую этикетки, а также работать со всеми стандартными настройками печати (в том числе делать предварительный просмотр изображения перед печатью).

Выберите параметры модуля Plotting как указано ниже.

Plotting parameters					
Dataset My Area\Line 1 \line 1 - stack					
Sort fields CDP OFFSET	Selection *:*				
Delete	From t= 0	to 2000	(ms)		
Variable spacing <u>field</u>	Additional scalar 0,3 Bias 0	Display C W1 C W1	r mode [/VA r		
Ensembles' gap 2 traces	Line width (mm)	- C R/t	ay 3 stom Define		
Normalizing Scales C None T Scale 140	ms/cm	al Layout	Horizons		
C Individual X Scale 25	traces/cm	Axis	Plot headers		
\\Pc-secretary\Canon MF6500 Series UFRII LT Print setup					
Display traces in Layout Preview Layout Priview					
Cancel					

В поле Dataset выберите набор данных line 1 - stack, полученный в одном из предыдущих потоков. В поле Sort fields выберите сортировку по заголовкам CDP:OFFSET. Чтобы прочитать все данные, в поле Selection введите *:* Задайте также параметры визуализации: Ensemble boundaries, Additional scalar, Display mode, Normalazing, Scales.

Для настройки параметров этикетки и полей изображения воспользуйтесь опцией General Layout... Задайте параметры, как показано на рисунке:

General Layout parameters			×	
General Margins Left 1 mm Top 1 mm				
Label				
T Right side	Company name	DECO Geophysical		
Label font	Project Title	My Project		
Text block width	Project Location	My Area		
80 mm Margins Left 1 mm	Comments	Stacked data Simple Bandpass Filter 5-10-40-80 Hz		
Top 30 mm		<		
Label Logo				
BMP file				
Logo Height 100 m Logo Width 150 m	im 🔽 Constrain prop	ortions Logo Position © Left © Right		
Cancel				

При помощи опций **T** Axis... настройте параметры визуализации и подписи вертикальной оси, как показано на рисунке:

T Axis parameters				
Show axis				
Major ticks				
Step 500	Tick length (mm) 2	Show values Sc	ale font	
	Tick line width (mm) 0.2	Show grid lines		
- Minor ticks				
Number 10	Tick length (mm) 1.5	Show values Sc	ale font	
per primary	Tick line width (mm)	Show grid lines		
Title				
Show title	Title t (ms)	Tit	le font	
OK Cancel				

При помощи опций X Axis... настройте параметры визуализации и подписи горизонтальной оси, как показано на рисунке:

X Axis parameter	s						×
Show axis —							
C Linear axis	Field	CDP 🔽	Step	50	Show values	Tick length (mm)	3
C Time axis	Hour	AAXFILT		C Different	Show grid lines	Tick line width (mm)	0.1
M	1inute	AAXFILT		C Multiple		Axis width (mm)	15
Se	econd	AAXFILT			Scale font	Title font	
Show axis							
C Linear axis	Field	OFFSET 💌	Step	100	Show values	Tick length (mm)	3
C Time axis	Hour	AAXFILT		 Different Interval 	🔲 Show grid lines	Tick line width (mm)	0.1
M	1inute	AAXFILT 💌		C Multiple		Axis width (mm)	15
Se	econd	AAXFILT			Scale font	Title font	
Show axis							
C Linear axis	Field	TRACENO	Step	10	M Show values	Tick length (mm)	3
C Time axis	Hour	AAXFILT		C Different	🗖 Show grid lines	Tick line width (mm)	0.1
M	1inute	AAXFILT		C Multiple		Axis width (mm)	15
Se	econd	AAXFILT			Scale font	Title font	
OK Cancel							

Выберите поля заголовков CDP и OFFSET значения которых будут подписываться вдоль горизонтальный оси. Мы задали интервал меток по оси CDP кратным 50 трассам и интервал меток по оси OFFSET кратным 100 трассам.

Задайте параметры линий сетки, шрифты подписи осей и значений по своему усмотрению. При помощи опций **Horizons..** и **Plot headers..** можно отображать горизонты и графики заголовков соответственно.

В поле Print setup... выберите печатающее устройство.

Воспользуйтесь опцией Layout Preview... для предварительного просмотра изображения перед печатью.

При необходимости скорректируйте набор параметров визуализации, не закрывая при этом окна **Layout preview**. Нажмите **Update preview**, чтобы перерисовать окно предварительного просмотра.

После того как Вы добьетесь устраивающего Вас результата, закройте окно предварительного просмотра и нажмите ОК в диалоге параметров модуля. Для того, чтобы начать печать нужно запустить поток на выполнение при помощи команды меню **Run**.