
Using Replicas

RadExPro 2018.1

Replicas – are copies of one and the same flow executed with different sets of module parameters.
Sets of parameters for each replica are taken from variables defined in a dedicated replica table.

Replica table – is a new type of database objects. Each column of such a table corresponds to a
named variable. Each row corresponds to an individual replica (a copy of a flow). Each replica would
use a set of variable values specified in a separate row of the table.

A flow with variables in module parameters is called a Template Flow. When a template flow is
executed, variables are substituted by specific values taken from related replica table.

A typical use case is standard processing of a set of lines. Now you can create common template
flows to be used for the processing, while individual parameters for each line (e.g. line name, SOL
shot, EOL shot, etc.) are pre-defined in a replica table.

List of modules supporting replica variables in RadExPro 2018.1:

• Seg-d Input –input file list

• Seg-y Input –input file list

• Seg-y Output –output file name and EBCDIC editor

• Trace Input –input dataset list and Selection field

• Trace Output – input dataset list

• Import SPS – input file list

• Import P1-90 – input file name

• Trace Header Math

• Data Filter

• Header<->Dataset Transfer -- dataset name

The list is to be extended in the future.

1. Creating replica table

Switch to Database Navigator tab and switch one replica tables display – Toggle
replicas toolbar button

Right mouse click in the list of objects and select New replica entry of the context menu.

Specify a name of the new replica table – here we will call it Marine Geometry.

While the new table is empty its name is displayed in gray.

2. Filling replica table in

Double click the just created table to open it for editing:

Let’s add a variable with an area name. Specify variable’s name -- AREA, and type – string, indicate the number of
rows required (4) and click the Add button. Assign a specific area name to all cells of the AREA column. In this
example, the name will be the same – BLACK SEA.

2. Filling replica table in

Now fill in sequence and line numbers – they are commonly used for naming of SEG-D and P1-90
files and we are going to use them as variables in I/O module parameters.

For that, we create 2 new variables – SEQNUM and LINE – and fill their cells in as shown on the
figure. In this examples we use 4 lines numbered as 3, 5, 7, and 50.

2. Filling replica table in

Add the following variables to the table and fill them with values:

SOL_SHOT – first good shot of a line

EOL_SHOT – last good shot of a line

STATUS – line status (Primary, Infill)

DAY, MONTH, YEAR

BAD_SHOT

Save the table using File/Save command. Now we can use the variables of this table in template flows.

3. Using variables in module parameters

General variable syntax:

{@name}, where name — is the name of a column from a replica table.

Examples of Trace Header Math formulas:

S_LINE = {@LINE}

offset = (chan — 1) * 25.0 + {@first_channel_offset}

When a number is converted to a string you may wish to specify the number format. Use
extended variable syntax with format specifier for that.

Examples of using format specifiers:

{@file_no, 06d} – 6-digit integer number, missed higher number positions are filled with zeroes (resulting
strings look like “000001”, “000002”, …, “000123”, … etc.)

{@first_channel_offset, 6.2f} – 6-digin real number with 2 decimal places, missed higher number positions
are filled with spaces (resulting strings look like “ 1.00”, “ 2.50”, “ 123.32”, … etc.)

Format specifiers are discussed in more detail in the Appendix on the last slide of this
presentation.

4. Template flow example

We start from input of SEG-D files. The paths to folders with the files look as following:

Data\SEGD\Seq003_BLACK_SEA5102836\2836

Data\SEGD\Seq005_BLACK_SEA15102812\2812

…etc.

We will use SEG-D Input module to read the files. In order to read all of them at once, instead of a list of specific file
names, we are going to use a selection mask (use Mask button to add one)

A mask may contain plain text, replica variables, wildcard characters -- *, ?, and intervals.

An interval <a,b> includes all integer numbers starting from a and up to b.

You can also use extended interval syntax <a,b|d> -- here d is a format specifier (only integer formats are allowed here,
see Appendix at the last slide).

For instance, interval <1,3|03d> will be converted to sequence of the following strings: “001”, “002”, “003”.

4. Template flow example

So, we were going to read all data files from the folders like these:

Data\SEGD\Seq003_BLACK_SEA5102836\2836

Data\SEGD\Seq005_BLACK_SEA15102812\2812

… etc.

In this case, we may used the following selection mask:

Data\SEGD\Seq{@SEQNUM,03d}_{@AREA}{@LINE}*\{@LINE}*\<{@SOL_SHOT},{@EOL_SHOT}>.sgd

Let us discuss selection mask in more detail:

Data\SEGD\Seq{@SEQNUM,03d}_{@AREA}{@LINE}*\{@LINE}*\<{@SOL_SHOT},{@EOL_SHOT}>.sgd

Seq{@SEQNUM,03d}_{@AREA}{@LINE}* -- defines folder names:

{@LINE}* - defines a subfolder with the line name, here * is a wildcard character that allows any
additional characters at the end of the line name, to accommodate cases like “1900I”.

<{@SOL_SHOT},{@EOL_SHOT}>.sgd – define files names based on shot interval from the replica table

4. Template flow example

When a module in the flow uses variables in its parameters, it is considered as a template and is marked in the
flow editor with T icon.

The whole flow is considered as a template when it contains at list one template module. Template flows are
marked with T icon in the project tree.

4. Template flow example

Here are parameters of other template modules using replica variables in the example template flow:

Data Filter – does not let the bad shot into the flow

Trace Header Math – assigns S_LINE, SEQ_NUM headers

Trace Output – the output dataset name defined as following:

GOM\010 Data Input\{@SEQNUM,03d}_{@AREA}{@LINE}

5. Executing a template flow

As our flow is a template, it cannot be executed without a reference to a replica table. When you click the Run button, you are
prompted to select a table from the project database and check specific rows within the table to be used for flow replicas:

5. Executing a template flow

After a replica table is selected and the rows are checked, an individual replica of the template flow will run for each of the rows.

Status of replica flows execution is shown as an extendable list:

Result of execution of replicas of this
template flow – 4 output datasets

5. Executing several template flows

Let us make one more template flow, here we are going to assign geometry from P1-90 files to the data

In the Trace Input module:

In the Import P1-90 module: Actual path to the files:

In the Header<->Dataset Transfer module:

5. Executing several template flows

After a template flow for geometry assignment is created and fine tuned, let us run both template flows at
the same time (assume, that we have not yet executed the 1st flow):

001 Data Load

002 P1-90 Import

Select both template flows (e.g. with Ctrl+left mouse click). Right-click to see the pop-up menu and add
them to a new queue. Similarly to executing one template flow, you will be prompted to select a replica
table.

5. Executing several template flows

When a table is selected it will open on the screen:

Check the rows for which you are going to run flow replicas – use checkboxes to the left of the rows

Click OK button, then a standard RadExPro Queues
dialog will open. Now you can execute all the replicas
using Run this queue button

5. Executing several template flows

As a result, 4 replicas of each of the 2 template flows (001 Data Load and 002 P1-90 Import) will be
executed: each flow will process 4 lines as indicated in the replica table.

Replicas execution status will be displayed in the Flow status window as an extendable list.

6. One more example of replica use

The aim is to export an existing dataset to SEG-Y so that each shot is saved to a separate SEG-Y file.

1) Create a replica table. Assumer, our dataset contains of 15 shots with different FFIDs:

6. One more example of replica use

2) Create a flow with Trace Input and Seg-Y Output modules

In the Selection field of the Trace Input module, we will use a variable called FFID that we have defined in
the replica table:

6. One more example of replica use

2) Create a flow with Trace Input and Seg-Y Output modules

In the Seg-Y Output module parameters, we will use the FFID variable in the file name string:

6. One more example of replica use

3) Run the template flow

4) Select the replica table 5) Here is the result – a set of Seg-Y files

Appendix

Notes on format specifiers for conversion of numbers to strings:

The format specifiers used are a subset of those used in Python standard.

1. Left before a number can only be filled by either zeros or spaces. The default is space, start format
specifier with ‘0’ conversion flag to make the numbers zero-padded.

2. d -- string output is signed integer decimal; if a variable converted is real it is rounded to the nearest
integer before conversion (0.5 -> 1).

3. f -- string output is a real decimal with a fixed number of decimal; e.g. 6.2f means that the output will
always have 2 decimal places.

4. e – string output is real exponential format

5. Format symbol (d, f, e) can be omitted. In this case, the output format will depend on the format
number: e.g. 06 would result in zero-padded 6-digit integer and 6.2 in space-padded 6-digit real with 2
decimal places.

6. 7f is equivalent to 7.0f (7-digit number, 0 decimal places), the result will be the same as for 7d.

7. If the length of the output string is not important, use .3f, .3e or just .3. You can also use 0.3f with the
same result.

