RadEXPro

Python Proxy

(Revised 05.01.2023)

RADEXPRO EUROPE OU
Jarvevana tee 9-40
11314 Tallinn, ESTONIA

RADEXPRO SEISMIC SOFTWARE LLC
29, Tornike Eristavi str.
Thilisi, Georgia

Visiting address:
26, S. Tsintsadze str.
Saburtalo, Thilisi, Georgia

t: +995 557 659 289
www.radexpro.com

E-mails:
support@radexpro.com
sales@radexpro.com

http://www.radexpro.com/
mailto:support@radexpro.com
mailto:sales@radexpro.com

seismic software www.radexpro.com

Content
1O 0] 01 (=T o | PP 2
1] 0o [T 1o] o U PP PP PP TPURTRPPR 3
1ol gp ot i (ol €T=T1a ©fe] g1t fo] BN 1Y €1 TSP 4
(O To [TSR PPPRRRRY .
LS £ SRR 6
Semblance COMPULATION..........coii it e e e e eees e e e e e e e e e e eeeeas 7
L To [PP 7
=S S 8
D 7=To | 010 ES{ 1] oo PP P PPP PP PPPPPPP 9
L To [T PSPPSR 9
=S S PPR 11
GEOPNONEO-DAS CONVEISIONcciiiiiiiiiiiiitittee et e e e e eeenssebs s e e e e e e et e e e e eeeeeesamamreeeeeeeeeas 12
L To [TR 12
=S £ OO PP 13

seismic software www.radexpro.com

Introduction

This tutorial isfor the users who aim to expand the functionalityref by introducing
their own algorithms in Python via th&ython Proxymodule. The tutorial contains several example
implementations of seismic processing algorithm&yhon Proxyincluding automatic gain control,
deghosting, and semblance attribute computation.

The tutorial assumethat the useris familiar with the fundamentals of Python processing
languageBefore starting the tutorial, it is recommended to read the section related-tg ke Proxy
in the manual. Note thafbor Python Proxyto function correctlyit is preferred that the user
installs Pythoron their systenbefore installing

The tutorial is accompanied by a project where each of the presented algorithragestedon
seismic data.

seismic software www.radexpro.com

Automatic Gain Control (AGC)

For simplicity, we start with an implementation of AGCHnthon ProxyIn the tutorial project,
the data input for this section of the tutoaald the following semblance computatmeturs in theéd10
data input flow.

Here is the exampleython Proxywindow. We write the processing function exactly in this
window. Note theProcess all headergsptionis checkedas here we want to pass all headers from the
iInput seismic dataset to toetput.

O Python script text: Process all headers [] Modify headers only

import numpy as np
from scipy.ndimage import uniform_filterid

def exec(traces, headers, headers_dictionary) :
eps = le-7 # small constant to avoid division by zero

n_headers = headers.shape[1] # get the number of headers
aaxslop_index = headers_dictionary.get("AAXSLOP", n_headers) # get the index of AAXSLOP header
win_size = int(headers[0, aaxslop_index])# set AGC window size from the AAXSLOP of first trace

#square the traces and get an array of AGC coefs by running a uniform filter along time
#'constant mode’ conducts zero padding on trace edges
agc_coefs = uniform_filterld(traces**2, size=win_size, mode="constant’)

#extract the square root from the coefs to obtain the RMS amplitude in the sliding window
agc_coefs = np.sqrt(agc_coefs)

#perform a smooth division of input data by the AGC coefficients
traces = traces / (agc_coefs + eps)

return (traces, headers)

() Python script file:

oK Cancel

Code

The annotated code for the AGC algorithm is presented below. The comments in the code (tex
following the comment symbol #) explain what happens in each line of code.

Here, we use theniform_filterld function from thescipylibrary, soscipy needs to be installed
on your computer (which can be done using gimilar to the installation aiumpyin thePython Proxy
manua). This function implements a running mean filter along a specified axis. We run this uniform
filter on squared seismic data along the time axis (which is set laxigrel parameter). Note that the
uniform_filterld takes car®f the padding and retusanarray of the same shape as input.

After this, we extract a square root from the result of the running mean to obtain the RMS
amplitudes in a sliding window which serve as our AGC coefficients. Finally, we divide the 2D seismic
data arrayracesby the aray of AGC coefficientagc_coefsOne can returagc_coefsnstead otraces
to conduct quality control of the resulting coefficients.

Two parametersare used in this modulewin_sizeis the AGC window size (in number of

RadExPro seismic software www.radexpro.com

samples) which is read from the AGKOP header from the first trace. AAXSLOP value is set in the
precedinglrace Header Matmodule. Note that one can use spaagant parameters by appropriately
setting varying headers and extracting their values for each trace into arepsigya smé constant
number which is used here to avoid division by zero and is directly hardcoded into the Python function.

import numpy as np
from scipy.ndimage import uniform_filterld

def exec(traces, headers, headers_dictionary):
eps = le-7 #small constant to avoid division by zero

n_headers = headers. shape[1] # get the number of headers

get the index of AAXSLOP header and set AGC window size

from the AAXSLORP first trace

aaxslop_index = headers_dictionary . get("AAXSLOP; n_headers)
win_size = int (headers[0, aaxslop_index])

#square the traces and get an array of squared AGC coefs by running a uniform
filter along time , 'constant mode' conducts zero padding on trace edges
agc_coefs = uniform_filterld(tra ces**2 , size =win_size, mode ='constant')

#extract the square root from the coefs to obtain the RMS in the sliding window
agc_coefs = np. sqrt (agc_coefs)

#perform a smooth division of input data by the AGC coefficients
traces = traces / (agc_coefs + eps)

return (traces, headers)

RadEXxPro seismic software

WWW.radexpro.com

Results

The module performs AGC as expected.

CDP

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200

Input data

[y
o
o

Time (ms)

150

cop

100

Time (ms)

150

cDP 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200
AGC coefficients
100
—~
[72]
=
N—r
()
£
|_

[y
w
e

RadExPro seismic software www.radexpro.com

Semblance computation
The £mblance attribute can be computed with two 2D filtering procedures and serves as an

example of 2D operations ython Proxy

Code

This modulereads its horizontal and vertical window size for semblance computation
AAXSLOP and AAXFILT headerssimilarly to the previous exampl@/e then apply thaniform_filter
procedure fronscipyon the 2Dtracesar r ay t o compute O6sum of squarl
one of which can be divided by the other to obtain the semblance {alggKington, 2015)

Y B B Q jooB B Q
Here, Yis semblance andlis the input dateExplicit division bywindow sizesM andN is not needed in
our code, as theniform_filter computes the mean instead of plain sum in each window.

import numpy as np
from scipy.ndimage import uniform_{filter

def exec(traces , headers, headers_dictionary)
eps = le-7 # small constant to avoid division by zero

n_headers = headers. shape[1] # getthe number of headers
get the index of AAXSLOP header and set horizontal semblance window size

from the AAXSLOP of first trace
aaxslop_index = headers_dictionary . get ("AAXSLOP; n_headers)

win_size_hor = int (headers[0, aaxslop_index]) #

get the index of AAX FILT header and set vertical semblance window size
from the AAX FILT of first trace

aaxfilt_index = headers_dictionary . get ("AAXFILT", n_headers)

win_size_vert int (headers[0, aaxfilt_index 1])
soft division of square of sum by sum of squares to obtain semblance
sum_of _squares = uniform_filter (traces ** 2,

size =(win_size_hor , win_size_vert), mode-'constant’)
square_of_sum = uniform_filter (traces |,

size =(win_size_hor ,win_size_vert), mode'constant’)**2
traces = square_of sum/(sum_of squares + eps)

return (traces , headers)

RadEXxPro seismic software www.radexpro.com

Results

Here is the semblance computation result.

CcpP 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200

Time (Ms)

RadExPro seismic software www.radexpro.com

Deghosting
In the tutorial project, the data input for this section of the tutorial occurs irithdeghost data
input flow. The input dataset is a commoffset section of a highesolution marine survey.
We implement a simplistidrequencydomain deghostingalgorithm here This serves as an

example for the implementation of Fourgwmain procedures ifython Proxy

Code

Here, we implement the following deghosting filil€éy (a rewrittenequation 4 from the paper
by Zhang et al. (2018)):

0
Here,j is the imaginary unit, is the angular frequencyi,is the absolute value of the sea surface

reflection coefficient (we assume pressure/hydrophone data being taken as an input, so the signed val

of the refection coefficient is close tel), T is the ghost delay measured in seconds (for vertical

propagation, can be approximated BW\2 whereh is the sensor depth aMis acoustic wave velocity

in water),” stands for complex conjugate, ani the regudrization coefficient.

import numpy as np

def exec(traces , headers, headers_dictionary)
eps = 6e-2 # regularization parameter

nt = traces .shape[1] # getthe number of time samples in the data
n_headers = headers. shape[1] # get the number of headers

get the index of PICK1 header and set the reflection coefficient
from the PICKL1 of first trace

pickl _index = headers_dictionary .get("PICK1", n_headers)

ref coef = headers[0, pickl_index]

get the index of PICK2 header and set the ghost delay

from the PICK2 of first trace

pick2_index = headers_dictionary . get ("PICK2", n_headers)
ghost_delay = headers[0, pick2_index]

dt_index = headers_dictionary .get("dt" , n_headers) # getthe index of DT header
dt = headers[0, dt index]/1e3 # get sample rate in seconds for fft

traces_fft = np.fft .rfft (traces , axis =1) # run FFT of traces array along time axis
freqs = np. fft .rfftfreq (nt,d=dt) # get Fourier frequencies for this array sampling
w = 2*np. pi *freqs # compute angular frequencies as 2*pi*f

compute the Fourier ghost operator, the main building block of our filter
oper_denom = (1 - ref coef * np.exp(-1j * w* ghost delay))

multiply the array of traces by the deghosting filter
traces_fft = traces_fft *np. conj (oper_denom)/ (oper_denom*np. conj (oper_denom) +eps)

run inverse fft specifying the number of samples in the output
and convert result back to float32
traces = np.fft .irfft (traces_fft , n=nt, axis =1).astype ('float32')

return (traces , headers)

seismic software www.radexpro.com

To compute and apply the above filter, we use the standard fast Fourier transform (FFT)
functionality ofnumpy. For FFT, we use théft function fromnumpy:. It is an implementation of FFT
for a realvalued arraylUUsing the forward and reverse Fourier transforms of avadakd arrayrfft and
irfft) allows us not to worry about the required symmetry of Fourier transforms, as thalvemlarray
FFT functions take this into account internally. This means thaaweimply implement the algorithm
for positive frequencies, and the negatikequency part will be automatically inferred from the
symmetry. Another useful feature miimpy FFT is therfftfreq function, whichcomputes an array of
positive Fourier frequaries for the given information of the array sampliAgso, note the conversion
back tofloat32is usedas a safety measure heas som&umpyfunctionstend to internally convert the
data tofloat64, and needdloat32 arrays

RadExPro seismic software www.radexpro.com

Results

Here is theleghostingesult.It is not perfect, but remarkable for less than 20 lines of code. Note

thevisually noticeablattenuation of the seabottom reflection receiver ghost (arrows).

| | | | L] | I | |]
I Before I I After I
I deghosting I deghosting
| |
| |
| |
I I
I I
: | : |
Time I I
0 | :
h | | | | h | | | |

The spectum of the original data computed in the window highlighted by the dashed line has

clear notches, which are filled in after the deghosting.

Before
deghosting

After
deghosting

