

Python Proxy

(Revised 05.01.2023)

RADEXPRO EUROPE OÜ
Järvevana tee 9-40
11314 Tallinn, ESTONIA

RADEXPRO SEISMIC SOFTWARE LLC
29, Tornike Eristavi str.
Tbilisi, Georgia

Visiting address:
26, S. Tsintsadze str.
Saburtalo, Tbilisi, Georgia

t: +995 557 659 289
www.radexpro.com

E-mails:
support@radexpro.com
sales@radexpro.com

http://www.radexpro.com/
mailto:support@radexpro.com
mailto:sales@radexpro.com

RadExPro seismic software www.radexpro.com

Content

Content .. 2

Introduction ... 3

Automatic Gain Control (AGC).. 4

Code.. 4

Results .. 6

Semblance computation .. 7

Code.. 7

Results .. 8

Deghosting .. 9

Code.. 9

Results .. 11

Geophone-to-DAS conversion .. 12

Code.. 12

Results .. 13

References ... 14

RadExPro seismic software www.radexpro.com

Introduction

This tutorial is for the users who aim to expand the functionality of RadExPro by introducing

their own algorithms in Python via the Python Proxy module. The tutorial contains several example

implementations of seismic processing algorithms in Python Proxy, including automatic gain control,

deghosting, and semblance attribute computation.

The tutorial assumes that the user is familiar with the fundamentals of Python processing

language. Before starting the tutorial, it is recommended to read the section related to the Python Proxy

in the RadExPro manual. Note that for Python Proxy to function correctly it is preferred that the user

installs Python on their system before installing RadExPro.

The tutorial is accompanied by a project where each of the presented algorithms can be tested on

seismic data.

RadExPro seismic software www.radexpro.com

Automatic Gain Control (AGC)

For simplicity, we start with an implementation of AGC in Python Proxy. In the tutorial project,

the data input for this section of the tutorial and the following semblance computation occurs in the 010

data input flow.

Here is the example Python Proxy window. We write the processing function exactly in this

window. Note the Process all headers option is checked, as here we want to pass all headers from the

input seismic dataset to the output.

Code

The annotated code for the AGC algorithm is presented below. The comments in the code (text

following the comment symbol #) explain what happens in each line of code.

Here, we use the uniform_filter1d function from the scipy library, so scipy needs to be installed

on your computer (which can be done using pip, similar to the installation of numpy in the Python Proxy

manual). This function implements a running mean filter along a specified axis. We run this uniform

filter on squared seismic data along the time axis (which is set by the axis=1 parameter). Note that the

uniform_filter1d takes care of the padding and returns an array of the same shape as input.

After this, we extract a square root from the result of the running mean to obtain the RMS

amplitudes in a sliding window which serve as our AGC coefficients. Finally, we divide the 2D seismic

data array traces by the array of AGC coefficients agc_coefs. One can return agc_coefs instead of traces

to conduct quality control of the resulting coefficients.

Two parameters are used in this module. win_size is the AGC window size (in number of

RadExPro seismic software www.radexpro.com

samples) which is read from the AAXSLOP header from the first trace. AAXSLOP value is set in the

preceding Trace Header Math module. Note that one can use space-variant parameters by appropriately

setting varying headers and extracting their values for each trace into an array. eps is a small constant

number which is used here to avoid division by zero and is directly hardcoded into the Python function.

import numpy as np
from scipy.ndimage import uniform_filter1d

def exec(traces, headers, headers_dictionary):
 eps = 1e-7 # small constant to avoid division by zero

 n_headers = headers.shape[1] # get the number of headers

 # get the index of AAXSLOP header and set AGC window size
 # from the AAXSLOP first trace
 aaxslop_index = headers_dictionary.get("AAXSLOP", n_headers)
 win_size = int(headers[0, aaxslop_index])

 #square the traces and get an array of squared AGC coefs by running a uniform
 # filter along time, 'constant mode' conducts zero padding on trace edges
 agc_coefs = uniform_filter1d(traces**2, size=win_size, mode='constant')

 #extract the square root from the coefs to obtain the RMS in the sliding window
 agc_coefs = np.sqrt(agc_coefs)

 #perform a smooth division of input data by the AGC coefficients
 traces = traces / (agc_coefs + eps)

 return (traces, headers)

RadExPro seismic software www.radexpro.com

Results

The module performs AGC as expected.

Input data

AGC result

AGC coefficients

T
im

e
(m

s)

T
im

e
(m

s)

T
im

e
(m

s)

RadExPro seismic software www.radexpro.com

Semblance computation

The semblance attribute can be computed with two 2D filtering procedures and serves as an

example of 2D operations in Python Proxy.

Code

This module reads its horizontal and vertical window size for semblance computation from

AAXSLOP and AAXFILT headers, similarly to the previous example. We then apply the uniform_filter

procedure from scipy on the 2D traces array to compute ‘sum of squares’ and ‘square of sums’ arrays,

one of which can be divided by the other to obtain the semblance values (e.g., Kington, 2015):

𝑆 = (∑ ∑ 𝑑𝑖𝑡
𝑀
𝑡=1

𝑁
𝑖=1)2 𝑀𝑁 ∑ ∑ (𝑑𝑖𝑡)2𝑀

𝑡=1
𝑁
𝑖=1⁄ .

Here, 𝑆 is semblance and d is the input data. Explicit division by window sizes M and N is not needed in

our code, as the uniform_filter computes the mean instead of plain sum in each window.

import numpy as np
from scipy.ndimage import uniform_filter

def exec(traces, headers, headers_dictionary) :
 eps = 1e-7 # small constant to avoid division by zero

 n_headers = headers.shape[1] # get the number of headers

 # get the index of AAXSLOP header and set horizontal semblance window size
 # from the AAXSLOP of first trace
 aaxslop_index = headers_dictionary.get("AAXSLOP", n_headers)
 win_size_hor = int(headers[0, aaxslop_index])#

 # get the index of AAXFILT header and set vertical semblance window size
 # from the AAXFILT of first trace
 aaxfilt_index = headers_dictionary.get("AAXFILT", n_headers)
 win_size_vert = int(headers[0, aaxfilt_index])

 # soft division of square of sum by sum of squares to obtain semblance
 sum_of_squares = uniform_filter(traces**2,
 size=(win_size_hor,win_size_vert), mode='constant')
 square_of_sum = uniform_filter(traces,
 size=(win_size_hor,win_size_vert), mode='constant')**2
 traces = square_of_sum/(sum_of_squares + eps)

 return (traces, headers)

RadExPro seismic software www.radexpro.com

Results

Here is the semblance computation result.

T
im

e
(m

s)

RadExPro seismic software www.radexpro.com

Deghosting

In the tutorial project, the data input for this section of the tutorial occurs in the 110 deghost data

input flow. The input dataset is a common-offset section of a high-resolution marine survey.

We implement a simplistic frequency-domain deghosting algorithm here. This serves as an

example for the implementation of Fourier-domain procedures in Python Proxy.

Code

Here, we implement the following deghosting filter 𝐹(𝜔) (a rewritten equation 4 from the paper

by Zhang et al. (2018)):

𝐹(𝜔) =
(1−𝑟𝑒−𝑗𝜔𝜏)

∗

(1−𝑟𝑒−𝑗𝜔𝜏)
∗
(1−𝑟𝑒−𝑗𝜔𝜏)+𝜀

.

Here, j is the imaginary unit, 𝜔 is the angular frequency, 𝑟 is the absolute value of the sea surface

reflection coefficient (we assume pressure/hydrophone data being taken as an input, so the signed value

of the reflection coefficient is close to -1), 𝜏 is the ghost delay measured in seconds (for vertical

propagation, can be approximated by 2h/V, where h is the sensor depth and V is acoustic wave velocity

in water), * stands for complex conjugate, and 𝜀 is the regularization coefficient.

import numpy as np

def exec(traces, headers, headers_dictionary) :
 eps = 6e-2 # regularization parameter

 nt = traces.shape[1] # get the number of time samples in the data
 n_headers = headers.shape[1] # get the number of headers

 # get the index of PICK1 header and set the reflection coefficient
 # from the PICK1 of first trace
 pick1_index = headers_dictionary.get("PICK1", n_headers)
 ref_coef = headers[0, pick1_index]

 # get the index of PICK2 header and set the ghost delay
 # from the PICK2 of first trace
 pick2_index = headers_dictionary.get("PICK2", n_headers)
 ghost_delay = headers[0, pick2_index]

 dt_index = headers_dictionary.get("dt", n_headers) # get the index of DT header
 dt = headers[0, dt_index]/1e3 # get sample rate in seconds for fft

 traces_fft = np.fft.rfft(traces,axis=1) # run FFT of traces array along time axis
 freqs = np.fft.rfftfreq(nt,d=dt) # get Fourier frequencies for this array sampling
 w = 2*np.pi*freqs # compute angular frequencies as 2*pi*f

 # compute the Fourier ghost operator, the main building block of our filter
 oper_denom = (1 - ref_coef * np.exp(-1j * w * ghost_delay))

 # multiply the array of traces by the deghosting filter
 traces_fft = traces_fft*np.conj(oper_denom)/(oper_denom*np.conj(oper_denom)+eps)

 # run inverse fft specifying the number of samples in the output
 # and convert result back to float32
 traces = np.fft.irfft(traces_fft, n=nt, axis=1).astype('float32')

 return (traces, headers)

RadExPro seismic software www.radexpro.com

To compute and apply the above filter, we use the standard fast Fourier transform (FFT)

functionality of numpy. For FFT, we use the rfft function from numpy. It is an implementation of FFT

for a real-valued array. Using the forward and reverse Fourier transforms of a real-valued array (rfft and

irfft) allows us not to worry about the required symmetry of Fourier transforms, as the real-valued-array

FFT functions take this into account internally. This means that we can simply implement the algorithm

for positive frequencies, and the negative-frequency part will be automatically inferred from the

symmetry. Another useful feature of numpy FFT is the rfftfreq function, which computes an array of

positive Fourier frequencies for the given information of the array sampling. Also, note the conversion

back to float32 is used as a safety measure here, as some numpy functions tend to internally convert the

data to float64, and RadExPro needs float32 arrays.

RadExPro seismic software www.radexpro.com

Results

Here is the deghosting result. It is not perfect, but remarkable for less than 20 lines of code. Note

the visually noticeable attenuation of the seabottom reflection receiver ghost (arrows).

The spectrum of the original data computed in the window highlighted by the dashed line has

clear notches, which are filled in after the deghosting.

Before

deghosting

After

deghosting

Before

deghosting

After

deghosting

Time

(ms)

RadExPro seismic software www.radexpro.com

Geophone-to-DAS conversion

This section presents a method for converting seismic data acquired with geophones to an

approximation of distributed acoustic sensor (DAS) data, which may be used for quality control or DAS

survey design.

In the tutorial project, the data input for this section of the tutorial occurs in the 210 DAS

conversion data input flow. The input dataset is a VSP survey acquired with both DAS and geophones

by Zulic et al. (2022) and was published as an open-source dataset at Research Data Australia

(https://doi.org/10.25917/7h0e-d392). This dataset was provided under a CC BY 4.0 license. More

details can be found at https://creativecommons.org/licenses/by/4.0/.

For the purposes of this tutorial, we extracted the vertical component of the geophone data for

the source number 24 and depth interval of 90-870 m. We kept only one trace for each of the depth levels

which were acquired several times. The same depth interval and shot point were taken for DAS data,

only FFID 13876 was used. After this, both DAS and geophone datasets were correlated with the pilot

sweep (which is also provided in the dataset) and output as SEG-Y files. These SEG-Y files are used as

an input to this tutorial project.

Code

Here, we implement the conversion method used by Zulic et al. (2022) and, originally, by Bakku

(2015):

𝜀�̇�𝑧
𝐷𝐴𝑆 =

𝑣𝑧(𝑧+
𝐿

2
)−𝑣𝑧(𝑧−

𝐿

2
)

𝐿
,

where 𝜀�̇�𝑧
𝐷𝐴𝑆 is the strain rate along the cable as measured by the DAS system, 𝑣𝑧 is the vertical geophone

recording, 𝑧 is the depth, and 𝐿 is the gauge length – a depth interval over which the strain rate is averaged

in the DAS system.

The annotated code is given below. We compute the numerator in the equation above via

introducing a finite-difference operator of a given length (set by oper_len and expressed in the number

of traces) and convolving it with the data by scipy’s convolve1d.

We do not input any parameters from headers, we only manually set oper_len in the Python Proxy

window. We also use the oper_len with the DEPTH header to compute the value of the modeled gauge

length 𝐿. This value of 𝐿 is printed into the log of the 220 Geo-DAS conversion flow, e.g., for the 2-

point operator the modeled gauge length is equal to the receiver spacing, which is 10 m in this dataset.

Note that in this simplified implementation we do not check whether oper_len is even or odd, so the

operator is either central-difference or staggered and the operator origin shifts uncontrollably, but this is

enough for the purposes of this demonstration. Also note that after differentiation we reverse the polarity

manually by Trace Math to fit the DAS data polarity.

https://doi.org/10.25917/7h0e-d392
https://creativecommons.org/licenses/by/4.0/

RadExPro seismic software www.radexpro.com

import numpy as np
from scipy.ndimage import convolve1d

def exec(traces, headers, headers_dictionary):

 oper_len = 2 # the differentiation operator length in number of traces

 # get the index of DEPTH header and compute the
 # median trace interval just to compute the gauge length
 n_headers = headers.shape[1]
 depth_index = headers_dictionary.get("DEPTH", n_headers)
 depth = headers[:, depth_index]
 dz = np.diff(depth)
 dz = np.median(dz)

 # compute the modeled gauge length and print it to Radex log
 L = (oper_len - 1) * dz
 print('Modeled gauge length is', L)

 # create a finite-difference operator of the given size
 diff_oper = np.zeros((oper_len)) # initialize by zeros
 diff_oper[0] = 1 # set first element to 1
 diff_oper[-1] = -1 # set last element (note -1 in index) to -1

 # convolve the operator with the data with the required normalization
 # axis=0 mean convolution along first axis, i.e., depth
 traces = convolve1d(traces, diff_oper, mode='constant',axis=0)/L

 return (traces.astype('float32'), headers)

Results

Here is the comparison of geophone, converted geophone (𝐿 = 10 m) and DAS datasets.

Geophone
Converted

Geophone DAS

T
im

e
(m

s)

RadExPro seismic software www.radexpro.com

References

Bakku, S. K. (2015). Fracture characterization from seismic measurements in a borehole (Doctoral

dissertation, Massachusetts Institute of Technology).

Kington, J. (2015). Semblance, coherence, and other discontinuity attributes. The Leading Edge, 34(12),

1510-1512.

Zhang, Z., Masoomzadeh, H., & Wang, B. (2018). Evolution of deghosting process for single‐sensor

streamer data from 2D to 3D. Geophysical Prospecting, 66(5), 975-986.

Zulic, S., Sidenko, E., Yurikov, A., Tertyshnikov, K., Bona, A., & Pevzner, R. (2022). Comparison of

Amplitude Measurements on Borehole Geophone and DAS Data. Sensors, 22(23), 9510.

