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Introduction 

This tutorial is for the users who aim to expand the functionality of RadExPro by introducing 

their own algorithms in Python via the Python Proxy module. The tutorial contains several example 

implementations of seismic processing algorithms in Python Proxy, including automatic gain control, 

deghosting, and semblance attribute computation. 

The tutorial assumes that the user is familiar with the fundamentals of Python processing 

language. Before starting the tutorial, it is recommended to read the section related to the Python Proxy 

in the RadExPro manual. Note that for Python Proxy to function correctly it is preferred that the user 

installs Python on their system before installing RadExPro. 

The tutorial is accompanied by a project where each of the presented algorithms can be tested on 

seismic data. 
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Automatic Gain Control (AGC)  

For simplicity, we start with an implementation of AGC in Python Proxy. In the tutorial project, 

the data input for this section of the tutorial and the following semblance computation occurs in the 010 

data input flow. 

Here is the example Python Proxy window. We write the processing function exactly in this 

window. Note the Process all headers option is checked, as here we want to pass all headers from the 

input seismic dataset to the output. 

 

Code 

The annotated code for the AGC algorithm is presented below. The comments in the code (text 

following the comment symbol #) explain what happens in each line of code.  

Here, we use the uniform_filter1d function from the scipy library, so scipy needs to be installed 

on your computer (which can be done using pip, similar to the installation of numpy in the Python Proxy 

manual). This function implements a running mean filter along a specified axis. We run this uniform 

filter on squared seismic data along the time axis (which is set by the axis=1 parameter). Note that the 

uniform_filter1d takes care of the padding and returns an array of the same shape as input. 

After this, we extract a square root from the result of the running mean to obtain the RMS 

amplitudes in a sliding window which serve as our AGC coefficients. Finally, we divide the 2D seismic 

data array traces by the array of AGC coefficients agc_coefs. One can return agc_coefs instead of traces 

to conduct quality control of the resulting coefficients. 

Two parameters are used in this module. win_size is the AGC window size (in number of 
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samples) which is read from the AAXSLOP header from the first trace. AAXSLOP value is set in the 

preceding Trace Header Math module. Note that one can use space-variant parameters by appropriately 

setting varying headers and extracting their values for each trace into an array. eps is a small constant 

number which is used here to avoid division by zero and is directly hardcoded into the Python function.  

import  numpy as np 
from  scipy.ndimage  import  uniform_filter1d  
 
def  exec(traces, headers, headers_dictionary):  
    eps = 1e- 7 # small constant to avoid division by zero  
 
    n_headers = headers . shape[ 1] # get the number of headers  
 
    # get the index of AAXSLOP header and set AGC window size  
    # from the AAXSLOP first trace  
    aaxslop_index = headers_dictionary . get( "AAXSLOP", n_headers)  
    win_size = int (headers[ 0, aaxslop_index])  
 
    #square the traces and get an array of squared AGC coefs by running a uniform  
    # filter along time ,  'constant mode' conducts zero padding on trace edges  
    agc_coefs = uniform_filter1d(tra ces**2 , size =win_size, mode ='constant' )  
 
    #extract the square root from the coefs to obtain the RMS in the sliding window  
    agc_coefs = np. sqrt (agc_coefs)  
 
    #perform a smooth division of input data by the AGC coefficients  
    traces = traces /  ( agc_coefs + eps)  
 
    return  (traces, headers)  
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Results 

The module performs AGC as expected. 
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Semblance computation  

The semblance attribute can be computed with two 2D filtering procedures and serves as an 

example of 2D operations in Python Proxy. 

Code 

This module reads its horizontal and vertical window size for semblance computation from 

AAXSLOP and AAXFILT headers, similarly to the previous example. We then apply the uniform_filter  

procedure from scipy on the 2D traces array to compute ósum of squaresô and ósquare of sumsô arrays, 

one of which can be divided by the other to obtain the semblance values (e.g., Kington, 2015): 

Ὓ  В В Ὠ ὓὔВ В Ὠϳ . 

Here, Ὓ is semblance and d is the input data. Explicit division by window sizes M and N is not needed in 

our code, as the uniform_filter  computes the mean instead of plain sum in each window. 

import  numpy as np 
from  scipy.ndimage  import  uniform_filter  
 
def  exec( traces ,  headers ,  headers_dictionary )  :  
    eps = 1e- 7 # small constant to avoid division by zero  
 
    n_headers  = headers . shape[ 1]  # get the number of headers  
 
    # get  the index of AAXSLOP header  and set horizontal semblance window size  
    # from the AAXSLOP of first trace  
    aaxslop_index  = headers_dictionary . get ( "AAXSLOP",  n_headers )   
    win_size_hor  = int ( headers [ 0,  aaxslop_index ]) #  
 
    # get the index of AAX FILT  header  and set vertical  semblance window size  
    # from the AAX FILT  of first trace  
    aaxfilt_index  = headers_dictionary . get ( "AAXFILT" ,  n_headers )  
    win_size_vert  = int ( headers [ 0,  aaxfilt_index ])  
 
    # soft  division of square of sum by sum of squares to obtain semblance  
    sum_of_squares  = uniform_filter ( traces ** 2,   
                         size =( win_size_hor , win_size_vert ),  mode='constant' )  
    square_of_sum  = uniform_filter ( traces ,   
                         size =( win_size_hor , win_size_vert ),  mode='constant' ) ** 2 
    traces  = square_of_sum / ( sum_of_squares  + eps)   
 
    return  ( traces ,  headers )  
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Results 

Here is the semblance computation result. 
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Deghosting 

In the tutorial project, the data input for this section of the tutorial occurs in the 110 deghost data 

input flow. The input dataset is a common-offset section of a high-resolution marine survey. 

We implement a simplistic frequency-domain deghosting algorithm here. This serves as an 

example for the implementation of Fourier-domain procedures in Python Proxy. 

Code 

Here, we implement the following deghosting filter Ὂ  (a rewritten equation 4 from the paper 

by Zhang et al. (2018)): 

Ὂ  
ᶻ

ᶻ . 

Here, j is the imaginary unit, is the angular frequency, ὶ is the absolute value of the sea surface  

reflection coefficient (we assume pressure/hydrophone data being taken as an input, so the signed value 

of the reflection coefficient is close to -1), † is the ghost delay measured in seconds (for vertical 

propagation, can be approximated by 2h/V, where h is the sensor depth and V is acoustic wave velocity 

in water), * stands for complex conjugate, and ‐ is the regularization coefficient. 

import  numpy as np 
 
def  exec( traces ,  headers ,  headers_dictionary )  :  
    eps = 6e- 2 # regularization parameter  
 
    nt  = traces . shape[ 1]  # get the number of time samples in the data  
    n_headers  = headers . shape[ 1]  # get the number of  headers  
 
    # get the index of PICK1 header  and set the reflection coefficient  
    # from the PICK1 of first trace  
    pick1_index  = headers_dictionary . get ( "PICK1" ,  n_headers )  
    ref_coef  = headers [ 0,  pick1_index ]  
 
    # get the index of PICK2 header  and set the ghost delay  
    # from the PICK2 of first trace  
    pick2_index  = headers_dictionary . get ( "PICK2" ,  n_headers )  
    ghost_delay  = headers [ 0,  pick2_index ]   
 
    dt_index  = headers_dictionary . get ( "dt" ,  n_headers )  # get the index of DT header  
    dt  = headers [ 0,  dt_index ] / 1e3 # get sample rate in seconds for fft  
 
    traces_fft  = np. fft . rfft ( traces , axis =1)  # run FFT of traces array along time axis  
    freqs  = np. fft . rfftfreq ( nt , d=dt )  # get Fourier frequencies for this array sampling  
    w = 2* np. pi * freqs  # compute angular frequencies as 2*pi*f  
 
    # compute the Fourier ghost operator, the main building block of our filter  
    oper_denom = ( 1 -  ref_coef  *  np. exp( - 1j  *  w *  ghost_delay ))  
 
    # multiply the array of traces by the deghosting filter  
    traces_fft  = traces_fft * np. conj ( oper_denom) / ( oper_denom* np. conj ( oper_denom) +eps)  
 
    # run inverse fft specifying the number of samples in the output  
    # and convert result back to float32  
    traces  = np. fft . irfft ( traces_fft ,  n=nt ,  axis =1) . astype ( 'float32' )  
 
    return  ( traces ,  headers )  
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To compute and apply the above filter, we use the standard fast Fourier transform (FFT) 

functionality of numpy. For FFT, we use the rfft  function from numpy. It is an implementation of FFT 

for a real-valued array. Using the forward and reverse Fourier transforms of a real-valued array (rfft  and 

irfft ) allows us not to worry about the required symmetry of Fourier transforms, as the real-valued-array 

FFT functions take this into account internally. This means that we can simply implement the algorithm 

for positive frequencies, and the negative-frequency part will be automatically inferred from the 

symmetry. Another useful feature of numpy FFT is the rfftfreq  function, which computes an array of 

positive Fourier frequencies for the given information of the array sampling. Also, note the conversion 

back to float32 is used as a safety measure here, as some numpy functions tend to internally convert the 

data to float64, and RadExPro needs float32 arrays. 
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Results 

Here is the deghosting result. It is not perfect, but remarkable for less than 20 lines of code. Note 

the visually noticeable attenuation of the seabottom reflection receiver ghost (arrows). 

  

The spectrum of the original data computed in the window highlighted by the dashed line has 

clear notches, which are filled in after the deghosting. 
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