

Обработка данных МПВ в программе RadExPro при помощи модуля Easy Refraction – практическое руководство

(Редакция 01.12.2011 г.)

ООО «Деко-геофизика СК» Научный парк МГУ Ленинские горы 1-77 119992 Москва, Россия

Тел./Факс: (+7 495) 930 94 14 E-mail: <u>support@radexpro.ru</u> Интернет: <u>www.radexpro.ru</u>

Содержание

Введение	3
Создание проекта	3
Загрузка данных и присвоение геометрии	6
Корреляция первых вступлений	13
Работа с модулем Easy Refraction	16
Выделение фрагментов годографов, относящихся к различным слоям	19
Обращение годографов в автоматическом режиме	20
Обращение годографов в ручном режиме	21
Экспорт полученных результатов	24

Введение

Руководство предназначено для начинающих обрабатывать данные сейсморазведки методом преломленных волн (МПВ) в программе RadExPro при помощи модуля Easy Refraction. Последовательно рассматриваются все этапы обработки: загрузка данных, присвоение геометрии, корреляция первых вступлений, выделение сегментов годографов, соответствующих различным слоям и, собственно, обращение годографов и получение слоистой скоростной модели среды.

Предполагается, что читатель знаком с теоретическими основами МПВ и метода t0.

Исходные данные для работы и проект, который должен получиться в результате, можно скачать с нашего сайта <u>http://www.radexpro.ru/downloads/tutorials</u>

Создание проекта

Проект — это совокупность исходных данных, промежуточных и окончательных результатов обработки, потоков обработки, организованных в единую базу данных, используемую пакетом обработки сейсмических данных RadExPro. Проекты хранятся в отдельных папках на диске, папка для проекта создается автоматически при создании проекта. Проект можно переносить с компьютера на компьютер простым копированием папки (при условии, что все используемые данные хранятся внутри этой папки).

Запустите менеджер проектов. Для этого выберите в меню Windows Пуск пункт RadExPro Advanced 2011.4.

При запуске менеджера проектов открывается диалоговое окно, содержащее список зарегистрированных проектов.

egistered projects	New project
	Select project
	Remove from list
	Save list
oject directoru:	Load list

Кликните на кнопку New Project и выберите родительский каталог на диске, в котором будет создан подкаталог с проектом. После этого, в появившемся окне, введите имя проекта.

Create subfolder	 Mu Projecti 	
🔽 Create subfolder	, luit loleed	
	Create subfolder	

Убедитесь в том, что опция Create subfolder выбрана. Кликните кнопку ОК. В выбранном каталоге появится подкаталог с именем проекта. Также проект появится в списке доступных (зарегистрированных) проектов.

Registered projects My Project	New project
	Select project
	Remove from list
	Save list
roject directory:	Load list

Выберите его и кликните ОК.

Появится главное окно программы RadExPro, содержащее дерево проектов.

Перед тем как начинать работать с проектом, мы рекомендуем внутри папки проекта создать каталог data и скопировать в него все данные. Хотя этот шаг и не является обязательным (можно читать данные, расположенные вне проекта), хранение данных внутри каталога проекта

позволяет программе использовать относительные пути до файлов с данными вместо абсолютных. Это облегчает перенос проектов с компьютера на компьютер.

Help Option	s <u>D</u> atabase Tools	E <u>x</u> it	(
			RENAME
			TRASH

База данных RadExPro имеет 3 структурных уровня. Верхний уровень отвечает площади, на которой проводились работы, средний – профилю, нижний – потоку обработки. Кликните правой кнопкой мыши на желтом кружке, выберите опцию Create new area и введите название площади, на которой проводились работы.

lelp	Options	Database	Tools	Exit
2	Create	new area		
				-

На следующем рисунке показано окно, в котором необходимо ввести название площади:

			-
My Area	a		
	ок	Cancel	

Аналогично, кликнув правой кнопкой мыши на желтом прямоугольнике с названием площади, выберите пункт Create line и создайте новый профиль.

elp	Options	Database Tools	Exit
7-		<u>.</u>	
\sim	-	View map	
	U	Create line	
		Rename	
		Delete	

Имя профиля вводится аналогично.

Line 1			
	пк	Cancel	

База данных позволяет в рамках одного проекта хранить несколько площадей, в каждой из площадей – несколько профилей, каждый профиль обрабатывается в нескольких потоках.

Загрузка данных и присвоение геометрии.

По аналогии с созданием площади и профиля, создайте поток обработки 010 – data load.

Перейдите в режим редактирования потоков, дважды кликнув левой кнопкой мыши по названию потока. В открывшемся окне редактора потоков сконструируем поток, состоящий из модулей SEG-Y Input и Trace Output.

При добавлении модуля SEG-Y Input задайте параметры чтения данных и убедитесь, что файлы идут в правильной последовательности, начиная с ПВ -24. Чтобы изменить положение любого из файлов в списке, воспользуйтесь стрелками вверх или вниз в правой части диалога импорта.

SEG-Y Input File(s) ko\Desktop\Tutorial_refraction\Data\24_source.sgy ko\Desktop\Tutorial_refraction\Data\11_source.sgy ko\Desktop\Tutorial_refraction\Data\23_source.sgy ko\Desktop\Tutorial_refraction\Data\35_source.sgy ko\Desktop\Tutorial_refraction\Data\47_source.sgy ko\Desktop\Tutorial_refraction\Data\47_source.sgy ko\Desktop\Tutorial_refraction\Data\47_source.sgy ko\Desktop\Tutorial_refraction\Data\47_source.sgy	Sample format Sample interval 1 C I1 C I2 C I4 I R4 Number of traces 48 I IBM Floating Point Trace length 512 I Use trace weighting factor 512 I I Use trace weighting factor 512 I I I Use trace weighting factor 512 I I I I I I I I I I I I I I I I I I I
Add Delete Load list Save list	RECNO,4I,,181/ SOURCE,4I,,185/ ILINE_NO,4I,,189/ XLINE
OK	Load remap Save remap

После модуля SEG-Y Input в поток добавим модуль Trace Output. Этот модуль сохранит прочитанные данные в базу данных, чтобы потом можно было присвоить им геометрию. Объект, который будет содержать эти данные назовите raw_data и разместите его на втором уровне базы данных в профиль Line 1 (как показано на следующем рисунке).

viects	Location
	⊡- My area ⊡- <mark>Line 1</mark> 010 data load

Также, для контроля, после модуля Trace Output добавьте в поток модуль Screen Display.

Полученный поток должен выглядеть следующим образом:

My Project/My Area/Line 1/010 - data load	WHEN AND AND AND	Auto Autor water Autor water	
Help Options Database Tools Fun Flowmode	- F2i		
SEG-Y Input <- [multiple]			Data I/O
Trace Output -> line 1 - raw	Trace Input	Data Input	
creen Display	Trace Output	Data Output	
	VSP Data Modeling	3D Data input	
	JD Data Output	SLG-D Input	
	Super Gather	6551	
	Lamb: Solid Layer - Solid modeling	Load Text Trace	
	JIOINC	RAMAC/GPR	
	SCS-3 Input	SEG-2 Input	
	SFG-B Input	SFG-Y input	
	SEG-Y Output	Text Output	
	2D Finite Difference Modeling		
			——Stacking/Ensembles
	Ensemble Stack	Asymptotic CCP Binning	
	Deconvolution	Predictive Deconvolution	
	Custom Impulse Trace Transforms	Surface-Consistent Deconvolution	
	Nonstationary predictive deconvolution		1 Sec. 6 577 (1116)
	DC Removal	Hilbert Transform	
	Resounde	Amplitude Correction	
	Bandpass Filtering	Butterworth Filtering	
	Trace Math Transforms	Zero Ottset DeMultiple	
	Wave field subtraction	VSP SDC	
	And the second second second	2011 C	Interactive Tools
	VSP Display	Screen Display	
	3D View	3D Screen Display	
	Velocity Editor	OC Analysis	
	3D GOZEC	Interactive Velocity Analysis	
	Platting*	Advanced VSP Disnaly	
	1 I DELING	Hardineed bor bropany	Migration
	VSD Minuting	T.K Minution	mgretton
	STOLTED	Stolt E-K Migration	
	Cupied Brotile VCB Migration	2D 2D VCD Migration	
	curved Projne v3/ Wigradon	20 50 V SF Wigrauon	Trace Edition
	Trans Marth	X to to only the lines	mate colong
	I use length	A merporation	
	mace Length	Trace Ealang	
			Data Linnancement

Для выполнения потока выберите пункт меню Run. В результате должно открыться окно Screen Display, отображающее вводимые данные, а сами данные будут прочитаны из файла на диске и записаны в базу данных. Окно Screen Display, которое должно появиться на экране, приведено ниже.

Далее необходимо присвоить геометрию сейсмическим данным: координаты источника (SOU_X) и координаты приемника (REC_X). Для этого воспользуемся модулем **Geometry Input.**

Создайте новый поток 020 - **Geometry Input**, добавьте модуль **Trace Input**, выберите ранее созданный набор данных **raw_data** как показано на картинке, и загрузите все данные в том порядке, как они идут в наборе данных, указав в поле Selection **Get all**. Нажмите ОК — модуль будет добавлен в поток.

Следующим шагом добавьте модуль **Near-Surface Geometry Input.** Данный модуль предназначен для присвоения геометрии данным, полученным различными методами, в том числе и МПВ.

Data Sets	Sort Fields
raw_data	
Ŀ	
Add Delete	Add Delete
	C Selection
	C Select from file
	C Database object Choose
OK Cancel	

При добавлении модуля появится диалоговое окно модуля, показанное на картинке ниже. Принципиально модуль делится на две части — интерактивную, на которой схематически изображатеся текущая расстановка, и часть с заданием параметров наблюдений. При изменении параметров наблюдений в нижней части, соответствующие позиции расстановки подсвечиваются стрелками в верхней части модуля.

Для задания геометрии данных, полученных по методу МПВ, перейдите во вкладку Refraction.

Сведения о расстановке наблюдений полученных данных: Приёмная линия — 48 каналов, расстояние между каналами - 1 метр. Пункты возбуждения на косе — 1, 12, 24, 36, 48 каналы (0, 11, 23, 35, 47 м соответственно). Выносы - -24 метра от первого канала, 23 метра от последнего канала.

При расчете геометрии с помощью модуля **Near-Surface Geometry Input → Refraction** будут рассчитаны координаты источников , приемников и расстояния источник-приемник. Данная информация записывается в поля заголовков SOU_X, REC_X, OFFSET соответственно.

Reflection/ MASVV	Refraction						-
		-			-		
,	MA		had		prote		
	1	2	Ţ	Ţ	12		
	1	T.	1	1	1		
Receivers							-
First Reciever Pos	sition 0	m	Nu	mber Of	Channels	12	
Reciever Step	5	m					
Streamer Sources -							
Const Step	First Source	Position	5	m			
C Variable Step				_			
	Source Ste	≥p	5	m			
Offset Sources —				10	NO 121 22		3
	Number of Forward Sourc	ces 3		ļ	Number of Reverse Sour	ces 3	
	Source Nº	Coordinat	æ		Source Nº	Coordinate	
C Const Step					1	1	
C Const Step	1	1				-	
C Const Step	1 2 3	1 2 3			3	3	

Для расчета геометрии необходимо указать следующие параметры (все координаты будем указывать в метрах, за ноль возьмем положение первого канала) согласно описанию расстановки, приведенному выше:

Приемная линия (раздел Receivers)

- Координата первого канала (First receiver position) 0
- Шаг между приемниками (Receiver step) 1
- Количество каналов (Number of channels) 48

Пункты возбуждения на косе (Streamer sources)

Зададим координаты пунктов возбуждения вручную — выберите опцию Variable step, при этом появится таблица задания координат ПВ в виде номер-координата. Установите количество

возбуждений на косе равным 5 (Number of Sources) и вбейте соответсвующие значения координат в таблицу: 1-0, 2-11, 3-23, 4-35, 5-47.

Пункты возбуждения на выносах (Offset sources)

В этом пункте необходимо указать количество пунктов возбуждений на выносах и их координаты. Выберите опцию Variable – при ее включении появится диалог заполнения количества источников и таблица координат.

Количество ПВ на выносе, формирующих «прямые годографы» (**Number of forward sources)** — **1**, координата, соответствующая данному ПВ равна -24 м.

Количество ПВ на выносе, формирующих «встречные годографы» (**Number of reverse sources)** — **1**, координата, соответствующая данному ПВ равна 70 м.

! Данные были записаны таким образом, что каналы в сейсмограмме пронумерованы не по порядку (1,25,2,26 и т. д. - следствие некоторых особенностей методики наблюдений и системы сбора). Однако, как было сказано выше, для корректной работы модуля необходимо, чтобы данные подавались на вход в правильной последовательности — в том порядке, как они идут по профилю. Это требование предъявляется как к каналам, так и к ПВ. Поскольку в нашем наборе данных каналы пронумерованы не порядку, воспользуемся опцией **Reassign FFID and CHAN, Headers** – каналы и номера ПВ при этом будут пронумерованы по порядку во всем наборе данных.

	1	2	48	
	ţ.	TT T	T T	
Receivers				
First Reciever Posi	tion 0	m	Number Of Channels	48
Reciever Step	1	m		
Streamer Sources —				
C Const Step	Number o	f Sources 5	Source Nº	Coordinate
 Variable Step 	i tumber o		1 2	11
			3	23 *
Offset Sources			ļ 1 <u></u>	
	Number of Forward Sou	irces 1	Number of Reverse Sou	irces 1
C Const Step	Source NS	Coordinate	Source Nº	Coordinate
Variable Step	1	-24	1	70
· variable step				
	1	And and a second se		

Итоговый вид модуля с введенными параметрами расстановки показан на рисунке:

Нажмите ОК по завершению присвоения параметров.

Для того, чтобы информация о координатах была записана в соответствующий набор данных, необходимо использовать модуль **Trace Output.** Объект, который будет содержать данные с геометрией, назовите geom_data и разместите его на втором уровне базы данных в профиль Line 1 (как показано на следующем рисунке).

Ibject name geometry_data	
bjects	<u>L</u> ocation
raw_data geometry_data	⊡- My area È- Line 1 010 Data load 020 Geometry Input
Rename Delete	Ok Cancel

В итоге, получившийся поток должен выглядеть следующим образом:

lp <u>O</u> ptions <u>D</u> atabase Tools Run Flo	w mode E <u>x</u> it		
co locut « raw, data			Data I/C
ar-Surface Geometry Input	Trace Input	Trace Output	
sa Output > competer data	SEG-Y Input	SEG-Y Output	
the output of geometry_uata	SEG-D Input	RAMAC/GPR	
	SEG-B Input	ЛОГИС	
	SEG-2 Input	GSSI	
	SCS-3 Input	Super Gather	
	Load lext Irace	lext Output	
	Data Input	Data Output	
			-Geometry/Header
	Trace Header Math	Compute Line Length	CONTRACTOR STREET
	Header<->Dataset Transfer	Header Averager	
	Header Output	Shift Header	
	Trace Header NMO/NMI	Surface-Consistent Calibration*	
			Interactive Too
	Screen Display	3D Gazer	
	Plotting*		
	55.7		
	DC Removal	lilbert Transform	
	Resample	Amplitude Correction	
	Bandpass Filtering	Butterworth Filtering	
	Trace Math Transforms	and the strength of the strength	
	2D Spatial Filtering	Antenna Ringdown Removal	
	Burst Noise Removal	Ensemble Equalization	

Запустите поток, нажав кнопку Run. В итоге мы получим набор данных с присвоенной геометрией.

Корреляция первых вступлений

Создадим новый поток 030 – *Picking*. Добавляем в него модуль Trace Input. В окно Data Sets добавляем только что созданный набор данных с присвоенной геометрией, сортировку проводим по SOU_X, REC_X, по всей выборке.

Data Sets	Sort Fields
geometry_data	
Add Delete	Add Delete
OK Cancel	C Select from file File C Database object Choose

Добавляем модуль Screen Display. Выбираем в нем удобные для корреляции волн масштабы изображения трасс и коэффициенты усиления. Дополнительные процедуры обработки, такие как "Bandpass Filtering", "Hand Static" и т.п. включаются по мере надобности. Однако следует помнить, что фильтрация, в особенности нуль-фазовая, «смазывает» первые вступления волн, поэтому корреляцию первых вступлений волн следует делать до фильтрации.

Запустите поток на выполнение. Выберите пункт меню Tools/New pick для начала пикировки первых вступлений.

Zoom	Common parameters	Tools Exit/Stop flow Exit			
		Approximate Spectrum) }		
REC_X		Pick	•	New pick	N
		Wells		Delete pick	Del
		Static corrections	•	Load pick	Ins
		Apply procedure	•	Load pick w/interpolation	
		Write History		Collect picks	
	$1 \leq 1 \leq 1$				

Далее можно пикировать вступления или экстремумы волн. Пикировать можно вручную "Hand pick" по каждой трассе, или в полуавтоматическом режиме "Auto fill", когда программа автоматически прослеживает волны по заданному признаку между двумя пикировками

интерпретатора. Режим пикировки задается во всплывающем окне меню Tools/Pick/Picking mode (подробнее см. в Руководстве пользователя). Пикировка осуществляется щелчком левой клавиши мыши при подведенном в выбранную точку маркере – в указанной точке появится крестик. Повторный щелчок левой клавишей в пределах той же трассы передвигает крестик в новое место, щелчок в пределах новой трассы поставит новый крестик. Ошибочно поставленный крестик можно убрать двойным щелчком правой клавиши мыши, или можно нажать по правой клавише мыши при подведенном к этому крестику маркере, и передвинуть ее по данной же трассе в точку с другим временем. Полностью удалить неудачный годограф можно простым нажатием на клавишу "Delete".

Пропикируйте все сейсмограммы по первым вступлениям. Чтобы сохранить пикировку, необходимо выбрать меню Tools/Save As...

My Project/My Area/Line 1/02	0 - pick			
Zoom Common parameters	Tools Exit/Stop flow Exit			
REC_X 0 20	Approximate Spectrum Pick Wells Static corrections Apply procedure Write History Amplitude editing	+ + + +	New pick Delete pick Load pick Load pick w/interpolation Collect picks Save	N Del Ins
	Trace Header Math		Save As	^S
	Reflect header changes in		Load from header	

Затем, в появившемся окне ввести имя пикировки и указать какому объекту в базе данных пикировка будет соответствовать, щелкнув на нем левой кнопкой мыши.

В программе предусмотрена также возможность сохранения годографов в виде текстовых файлов для последующего использования их в других интерпретационных программах (Tools/Pick/Export pick).

Location	1997 (1997)	
		My area Line 1 O10 Data load O20 Geometry Input O30 Picking

Далее необходимо нажать кнопку Pick headers... и убедиться, что в левой колонке выбрано SOU_X, в правой – REC_X.

S_LINE SCDP SECOND SEGDGAIN SEQNO SFPIND SOU_CRL SOU_CRL SOU_CRL SOU_ELEV SOU_H2OD SOU_H2OD SOU_H2OD SOU_SUDC SOU_STAT SOU_STAT SOU_STAT1 SOU_STAT2	* Ш	OFFSET PATH PICK1 PICK2 PREAMP R_LINE REC_CRL REC_CRL REC_LEV REC_LEV REC_H20D REC_INL REC_RESID REC_SLOC REC_STAT REC_STAT1 REC_STAT2 BEC_STAT3	·
SOU_STAT3	-	REC_UPHOLE	÷

Работа с модулем Easy Refraction

Создайте новый поток *040 – Easy refraction*. Добавьте в него модуль Easy Refraction. В появившемся окне выбираем Browse...

hoose Easy Refraction scheme	×
	Browse
OK Cancel	

Появляется окно задания имени «схемы». «Схема Easy Refraction» это совокупность годографов, возможно разделенных на сегменты, соответствующие разным слоям, полученные в результате работы границы и др. При выходе из модуля в «схеме» сохраняется его текущее состояние.

)bject <u>n</u> ame scheme1	
<u>)</u> bjects	Location
	⊡ My area È Line 1 D Data load 020 Geometry Input 030 Picking 040 Easy refraction

Задав имя новой схемы, нажимаем ОК и запускаем поток.

Появляется рабочее окно модуля Easy Refraction. Рабочее окно разделено на две основные части — работа с годографами (верхнее окно) и модель среды (нижнее окно). Внешний вид обоих частей (цвет фона, цвет годографов, палитра и т. д.) может быть изменен пользователем (см. Руководство пользователя).

Чтобы загрузить годографы, нажмите кнопку Load from RadExPro DB - появится окно выбора годографов. Загрузите необходимые годографы и нажмите ОК.

My area Line 1 O10 Data load O20 Geometry Input O30 Picking O40 Easy refraction O pick	My area\Line 1\pick <	
	OK Cancel	

В верхнем окне появятся годографы, ранее пропикированные нами. Средства модуля позволяют производить различные процедуры с годографами — редактирование точек, сглаживание, интерполяция, перенос годографов и др. (описание всех возможных действий с годографами можно найти в Руководстве пользователя).

<Построение «зеркальной кривой». При пикировке первых вступлений полученных данных в текущем проекте не была произведена пикировка с ПВ -24 метра, поскольку обнаружение первых вступлений на этом ПВ сильно затруднено (следствие сильных скачков моментов записи на данном ПВ). Для получения прямого нагоняющего годографа воспользуемся функцией **Mirror curve.** Для этого оставьте на экране встречный нагоняющий годограф с ПВ 70, выделите его левой кнопкой мыши, выберите пункт меню **Time curves-> Mirror curve.** В результате будет построен симметричный прямой годограф, привязанный к ПВ -23>.

Выделение фрагментов годографов, относящихся к различным слоям

Для того чтобы приступить к построению преломляющей границы, необходимо отметить сегменты годографов, которые относятся к тому или иному слою. Для этого воспользуемся интерактивным маркером.

Выберите пункт меню Time Curves/Marker/1 или нажмите кнопку «1» на клавиатуре — на экране появится круг, символизирующий маркер первого слоя. Цвет маркера может быть изменен опция View – Color settings. Для того, чтобы изменить размер маркера необходимо зажать клавишу Shift и прокрутить колесико мышки.

Зажатой левой кнопки мыши при активном маркере первого слоя выделите те части годографов, которые относятся к первому слою. Выделение точек излома годографов, и соответственно, задание числа слоев в интерпретационной модели разреза, осуществляется интерпретатором в соответствии с принципами, изложенными в литературе. Автоматически проводится линейная аппроксимация и выводятся значения скоростей, полученные по годографам.

Аналогичным образом выбираем второй маркер и выделяем части годографов, относящиеся ко второму слою. Визуализацию тех или иных годографов можно отключить в левом окне модуля нажатием на галочку.

Чтобы выйти из режима маркера, заходим в меню Time Curves/Marker/2 и нажатием левой кнопки мыши убираем галочку (дублируется кнопкой ` на клавиатуре).

Обращение годографов в автоматическом режиме

В модуле Easy refraction реализовано два принципиальных подхода к построению преломляющих границ — полностью автоматический и ручной режим. Ниже рассмотрим оба способа на примере наших данных.

Для того, чтобы построить преломляющую границу методом То автоматически (требуется, чтобы слои были выделены на годографах), необходимо зайти в меню Inversion и выбрать Automatic inversion (дублируется кнопкой F5 и зеленой стрелкой на панели задач).

me curves count: 7 X: 10.95 m T: 80 ms

Результат работы показан на рисунке: в нижней части рабочего окна модуля построено положение границы между первым и вторым слоем. Цветом отображаются скорости, соответствующие текущей палитре.

Обращение годографов в ручном режиме

Второй подход к построению модели — ручной режим, позволяющий контролировать все шаги построения границы методом То, а именно: построение сводных годографов, уравнивание годографов по взаимным временам, построение разностного и То годографов, задание скорости в верхнем слое. На каждом этапе существует возможность редакции годографов.

В модуле также реализована возможность построения разности двух годографов. Для этого необходимо один годограф выделить левой кнопкой, второй годограф выделить правой кнопкой мыши. Затем зайти в меню **Time Curves/Travel time difference**. В отдельном окне будет построен график разности между выделенными годографами. В случае если в первом вступлении регистрируются рефрагированные волны, график разности будет всюду убывающей функцией, если головные – функция сначала будет убывать, затем выйдет на константу.

Первый шаг в построении границы методом To — построение сводных годографов. Эта процедура необходима для получения годографа, закрывающего «мертвую» зону - зону прослеживания прямой волны на прямом и встречном годографах. Используя нагоняющие годографы, прямой и встречный, годограф головной волны можно достроить в «мертвой» зоне. Процедура реализуется с помощью меню Inversion/Composite travel time curves.

При построении сводного годографа учитываются времена со всех годографов, относящихся ко второму слою.

Так, при построении прямого сводного годографа в левой части будет учитываться только нагоняющий годограф, далее – осредненное время между нагоняющим и прямым годографом, затем – осредненное время между всеми тремя годографами. База осреднения задается в меню **Inversion-> Settings.** При этом все использующиеся при построении годографы будут опущены или

подняты на время, соответствующее годографу, ближе всего расположенному к началу расстановки и находящемуся внутри нее.

Аналогично проводится построение сводного встречного годографа. Результат построения сводных годографов показан на рисунке:

По принципу взаимности время пробега от источника к приемнику не изменится, если поменять источник и приемник местами. Это время соответствует взаимным точкам на прямом и встречном годографах. Поэтому необходимо увязать годографы во взаимных точках. Модуль позволяет посмотреть невязку и уравнять времена во взаимных точках. Выделение точек, которые необходимо увязать, происходит автоматически при выделении двух годографов левой и правой кнопками мыши. В нижней части окна модуля выводится невязка взаимных точек RT у двух взаимных годографов. Для увязки взаимных времен необходимо зайти в меню **Inversion** и выбрать **Reciprocal time leveling.** Эта функция позволяет найти среднее время между взаимными временами и автоматически подгоняет годографы под это время.

Следующий шаг - построение годографа t0 и разностного годографа. Для этого необходимо выделить прямой годограф левой кнопкой мыши, встречный – правой и зайти в меню Inversion/Velocity analysis and time depth functions. Результат построения показан на картинке:

Заключительный шаг в построении границы — выбор скорости в верхнем слое и задание параметров расчета скорости во втором слое по разносному годографу.

Выберите пункт меню Inversion/Refraction Surfaces – появится следующий диало
--

V1 Estimation Automatic 🔽	V2 Estimation
Value 500	Window width 15
	Window step 10
Correct values manually	Correct values manually

V1 Estimation – параметры вычисления скорости в первом слое — можно либо задать скорость вручную (одно значение на весь профиль), либо выбрать автоматический расчет (при этом скорость будет рассчитана по всему профилю путем линейной интерполяции между ПВ). V2 Estimation - параметры вычисления скорости во втором слое по разностному годографу. Window width – количество точек, которые берутся в расчет, Window step – шаг по базе. Correct values manually на обоих вкладка позволяет редактировать значения скоростей по профилю вручную.

Оставим текущие значения параметров без изменений и нажмем кнопку ОК.

Результат построения преломляющей границы показан на картинке.

Экспорт полученных результатов

Вы можете экспортировать полученные результаты при помощи команды меню file/Export. При этом появится окно сохранения файлов. В выпадающем списке «Тип файлов» можно выбрать что именно нужно экспортировать и в каком формате.

	Сохранить как							? 🗙	184
	<u>П</u> апка:	🚞 Project1		~	0	1	.		
	Недавние документы Рабочий стол Мой документы	Area1 data DB_SAVE LOGS Refract							1.751
		<u>И</u> мя файла:				~) <u>х</u> ранить	
	Сетевое	<u>Т</u> ип файла:	Time curves (*.txt)			~)тмена	
1			Time curves (*.txt) Easy refraction format (*.erf) Borders (*.txt) Velocities (*.txt) Export DXF (*.dxf)	6					F

В текстовой (ASCII) файл можно экспортировать:

- годографы (Time curves)
- глубины преломляющих границ (Borders)
- скорости (Velocities)

Кроме того, преломляющие границы можно экспортировать в формате DXF.